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Abstract. We study the causes of anomalous dispersion in Darcy-scale porous media characterized by
spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial
variability in the flow properties through Darcy’s law and thus impacts on solute and particle transport.
We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of
heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic
properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conduc-
tivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial
disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity
length scales are kinematically coupled with the transition time through velocity. We show that the average
particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by
the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales.
The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dis-
persion in terms of heterogeneity correlation and the distribution of heterogeneity point values. We derive
analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and
first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled
CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values
and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their
mechanisms, however are very different, which manifests in the distributions of particle positions and ar-
rival times, which plays a central role for the prediction of the fate of dissolved substances in heterogeneous
natural and engineered porous materials.

1 Introduction

Large scale transport in disordered media generally ex-
hibits non-Fickian features that cannot be captured by
models based on the advection-dispersion equation (ADE)
with constant drift and dispersion coefficients. Non-Fickian
or anomalous transport characteristics have indeed been
found ubiquitously in natural and engineered systems [1,
2], including transport of charge carriers in amorphous
solids [3,4], photon transport in atomic vapors [5] and in
Lévy glasses [6], animal foraging patterns [7] and human
motion [8], diffusion in living cells [9–11], and contaminant
transport in geological formations [12].

In this paper, we focus on solute and particle trans-
port in Darcy-scale heterogeneous porous media, whose
applications range from solute transport in fractured and
porous geological media [13] to chromatography and chem-
ical engineering [14]. Spatial heterogeneity in the physical
and chemical medium properties lead to anomalous trans-
port behaviors characterized by non-linear growth of vari-
ance of particle displacements, non-Gaussian particle dis-

tributions and early and late particle arrivals [15–23,12,
24,25]. The sound understanding of these phenomena is of
crucial importance for applications ranging from geologi-
cal storage of nuclear waste, carbon dioxide sequestration
in geological formations, geothermal energy exploration,
to name a few. The heterogeneity impact on large scale
transport through heterogeneous media has been quan-
tified using stochastic-perturbative approaches to quan-
tify macrodispersion coefficients [26–28], as well as non-
local constitutive theories [29,30], fractional advection-
dispersion equations [31–34], multi-rate mass transfer mod-
els [17,21,23], time domain random walks [19,35–38,25,
39,40] and continuous time random walks (CTRW) [20,
41,42,12,24] to account for anomalous transport features
in spatial distributions and arrival times.

Continuous time random walks [43] provide a natu-
ral approach to dispersion in disordered media, for which
transport properties such as particle velocities and reten-
tion are persistent in space. Thus, particle motion can
be characterized through a series of spatial and tempo-
ral transitions, which are determined by the statistical
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medium properties. Independence of subsequent space and
time increments requires that the spatial disorder is sam-
pled efficiently by the microscopic particle motion, this
means, particles should in average explore ever new as-
pects of the disorder [1]. This is the case for purely dif-
fusive motion in d > 2 dimensional disordered media [1,
44], and for biased motion in random media in any di-
mension. Thus, the CTRW approach has been used for
the modeling of anomalous dispersion for a broad range
of particle motions in random media [45,2,12,46–48,38]
starting with the pioneering work of Scher and Lax [3]
that quantifies the anomalous motion of charge carriers in
amorphous solids.

Here we focus on solute and particle transport in het-
erogeneous porous media. Saffman [49] used an approach
very similar to CTRW for the quantification of pore-scale
particle motion and the derivation for dispersion coeffi-
cients. Anomalous transport due to pore scale flow hetero-
geneity has been modeled with CTRW approaches based
on detailed numerical simulations [50–56] and laboratory
scale experiments [57]. These approaches are based on the
property that particle velocities are persistent over a char-
acteristic pore scale such that the transition time is given
kinematically by the transition length and the flow veloc-
ity [58]. The work of Berkowitz and Scher [20] has used
the CTRW approach for the characterization of anoma-
lous solute dispersion in fractured media, the work by
Hatano and Hatano [41] for the interpretation of solute
breakthrough curves in laboratory scale flow and trans-
port experiments through columns filled with porous ma-
terial. The CTRW and the related time-domain random
walk (TDRW) approach [25,40] have been used to model
non-Fickian and anomalous transport features in Darcy-
scale heterogeneous porous media [12,40] under uniform
and non-uniform flow conditions [59,60]. Again, the im-
pact of advective heterogeneity is quantified through kine-
matic coupling of the transition length and time via the
flow velocity. In this context, the CTRW has been coupled
with spatial Markov models for the evolution of particle
velocities along streamlines [61,24,62] in order to capture
correlation effects of subsequent velocities and to model
the impact of the initial velocity distributions on solute
transport [58,63]. Also the impact of solute retention due
to mass transfer between mobile and immobile zones ow-
ing to physical or chemical interactions between the trans-
ported particle and the medium has been modeled by dif-
ferent CTRW approaches [64–69,56,70].

We investigate here two particular aspects of trans-
port through heterogeneous porous media, namely dis-
order correlation and disorder distribution, which both
can give rise to anomalous dispersion in disordered me-
dia [1]. Distribution versus correlation induced anomalous
transport was studied for biased particle motion in d = 1
dimensional media characterized by spatially varying re-
tention properties [71]. Here we focus on advective par-
ticle motion through Darcy scale porous media charac-
terized by spatially variable hydraulic conductivity. Hy-
draulic conductivity is the central material property for
the understanding of flow and transport in porous media.

It varies in natural media over up to 12 orders of mag-
nitude [13]. For Darcy scale porous and fractured media,
the distribution of hydraulic conductivity is mapped onto
the flow velocity via the Darcy equation [13]. For low hy-
draulic conductivities, which are of particular relevance
for the occurrence of anomalous transport, the conductiv-
ity has been shown to be proportional to the magnitude of
the Eulerian flow velocities [37,72], which in turn can be
related to the particle velocities [58]. We consider porous
media characterized by strong spatial correlation of hy-
draulic conductivity and thus flow velocity, expressed by
a distribution of characteristic persistence scale, as well
as broad heterogeneity point distributions. The objective
is to derive the governing equation for the average par-
ticle motion and investigate and quantify the impacts of
heterogeneity distribution and heterogeneity correlation
on average particle transport in terms of spatial particle
distributions, arrival times and dispersion.

This paper is organized as follows. The flow and trans-
port model as well as the porous media model are dis-
cussed in Sect. 2. Section 3 derives a coupled CTRW model
for average particle motion based on coarse-graining of
the microscopic equations of motion and ensemble aver-
aging. Section 4 uses the derived model to investigate the
transport behavior in three different disorder scenarios
that are characterized by distribution-induced anomalous
transport, correlation-induced anomalous transport and
anomalous transport induced by both distribution and
correlation. For each scenario, we derive the asymptotic
scalings of the moments and the first arrival time distri-
butions and we perform numerical simulations.

2 Physical model

In the following, we present the basics of flow and advec-
tive transport in Darcy scale heterogeneous porous media
and specify the statistical properties of the heterogeneous
media model under consideration.

2.1 Flow and transport in porous media

Flow through heterogeneous porous media is described by
the Darcy equation [13] for the Eulerian flow field u(x)

u(x) = −K(x)∇h(x), (1)

whereK(x) is hydraulic conductivity and h(x) is hydraulic
head. We assume that both medium and fluid are incom-
pressible and thus ∇ · u(x) = 0, which implies

∇K(x) · ∇h(x) +K(x)∇2h(x) = 0. (2)

The position vector here is where x = (x, y, z)>. The abso-
lute Eulerian velocity is denoted by ve(x) = ‖u(x)‖, where
‖·‖ denotes the `2 norm. The spatially varying hydraulic
conductivity depends both on the medium and fluid prop-
erties. The fluid properties are constant here, thus it ex-
presses the permeability of the porous medium. The hy-
draulic conductivity is modeled as a stationary and er-
godic spatial random field [73,28], whose statistical prop-
erties are discussed in the next section. The stochasticity
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of K(x) is mapped onto the flow velocity through Eq.
(1). Ergodicity implies that the probability density func-
tion (PDF) pe(v) of velocity point values ve(x) sampled in
space is equal to ensemble sampling, pe(v) = 〈δ[v−ve(x)]〉,
where the angular brackets denote the disorder average
and δ(·) denotes the Dirac delta-distribution. We consider
in the following a global hydraulic head gradient aligned
with the x-direction, which drives the flow through the
porous medium.

We consider here purely advective transport, which is
described by the advection equation

dx(t)

dt
= u[x(t)]. (3)

For steady flows, streamlines and particle trajectories are
identical. The distance s(t) a particle covers along a stream-
line is given by

ds(t)

dt
= vt(t), vt(t) = ‖u[x(t)]‖. (4)

We perform now a change of variables from t→ s accord-
ing to [71,70,58]

dt =
ds

vs(s)
, vs(s) = ‖u[x(s)]‖ (5a)

such that the advection equation (3) transforms to

dx(s)

ds
=

vs(s)

vs(s)
, vs(s) = u[x(s)]. (5b)

The particle velocities vs(s) are sampled equidistantly along
streamlines as opposed to the classical definition of La-
grangian velocities given by vt which are sampled isochronally
along streamlines [58]. We refer to the point probabil-
ity density function (PDF) ps(v) of velocities vs(s) along
streamlines as the s-Lagrangian velocity PDF. It is related
to the Eulerian velocity PDF pe(v) through flux-weighting
as [58]

ps(v) =
v

〈ve〉
pe(v), (6)

where 〈ve〉 is the mean Eulerian velocity, see also Ap-
pendix A. As initial condition, we consider here a flux-
weighted particle injection, this means the number of par-
ticles is proportional to flow velocity at the injection point.
Thus, the initial distribution of particle velocities is equal
to (6).

2.2 Disorder model

We consider random media in which the hydraulic con-
ductivity is spatially distributed in a geometry of bins or
voxels of constant height h0 and width d0 and variable
length `. We assume that the properties of the medium
are constant within a bin. Thus, we assign to the i-th
bin the conductivity Ki, which is distributed according
to pK(K). The bin length ` is distributed according to
p`(`). Figure 1 illustrates the heterogeneity organization

and the distribution of the velocity magnitude ve(x). We
observe that the spatial organization of ve(x) is similar to
the distribution of K(x). In fact the relation between ve-
locity magnitude and hydraulic conductivity is obtained
from (1) as

ve(x) = K(x)‖∇h(x)‖. (7)

This means that, for an approximately constant hydraulic
head gradient, velocity magnitude and hydraulic conduc-
tivity are directly proportional. In fact, for stratified me-
dia, this means media characterized by infinitely long bins,
the head gradient is constant and the streamlines are par-
allel. Here, the streamlines are not parallel because of fluid
mass conservation as expressed by ∇ · u(x) = 0. Never-
theless, within a bin of constant conductivity, the stream-
lines are approximately parallel as illustrated in Fig. 1.
Locally, within a bin, conductivity is constant and thus,
the flow equation (2) implies that the head gradient is
constant. In fact, the flow field inside a bin can be ap-
proximated by the solution for an isolated inclusion [74,
37,25]. This implies specifically that for small conductiv-
ities ve(x) ∝ K(x), which is what we see in Fig. 1. It
has been observed in numerical simulations of Darcy scale
flow that the PDF of the velocity magnitude and the PDF
of hydraulic conductivity are proportional at small values
[75,72,76]. Note that this local relation does not violate
fluid mass conservation because it concerns the velocity
magnitude ve(x) and not u(x). Furthermore, the flux-
weighting relation (6) between the PDF of the Eulerian
velocity magnitude and the PDF of the s-Lagrangian ve-
locity is a direct consequence of the fact that the flow
field is divergence-free. Thus, fluid mass conservation is
accounted for in this sense. In summary, geometry and
distribution of the K-field are imprinted, at least for small
values, in the distribution of Eulerian velocity magnitudes.
Based on these observations, we make the following sim-
plifying assumptions. We consider the spatial distribution
of the Eulerian velocity ve(x) rather than K(x) as our
starting point. We note that the small values of velocity
magnitude and thus conductivity dominate the asymp-
totic transport behavior. Thus, this simplification allows
to study the mechanisms of anomalous transport in cor-
related porous media, while the early time behavior is in
general not captured. Thus, we now assume that the Eu-
lerian velocity field ve(x) is organized in bins of variable
horizontal and constant vertical extensions as described
above. In the following, we specify the heterogeneity and
correlation scenarios in terms of the PDF pe(v) of Eulerian
velocities and p`(`) of horizontal bin sizes.

2.2.1 Heterogeneity

We consider two different distributions of ve. The weak
heterogeneity scenario is defined by the log-normal veloc-
ity PDF

pe(v) =
1

v
√

2πσ2
e

exp

{
− [ln(v)− µe]2

2σ2
e

}
. (8)

3



The final publication is available at Springer via http://dx.doi.org/10.1140/epjb/e2017-80370-6

0 20 40 60 80 100
x

0
5

10
15
20
25
30
35
40
45

y

0 20 40 60 80 100
x

0
5

10
15
20
25
30
35
40
45

y

Fig. 1. (Top panel) Spatial distribution of hydraulic conduc-
tivity K(x). (Bottom panel) Spatial distribution of the corre-
sponding Eulerian velocity ve(x). Dark blue denotes the lowest,
yellow the highest values of conductivity and velocity magni-
tude, respectively. Red lines represent the streamlines and the
black line shows the dispersion of particles at different times,
which are injected along a line. The velocity field is obtained
by solving 1 using finite volumes with a prescribed head gra-
dient at the vertical boundaries and no-flow conditions at the
bottom and top boundaries.

where µe is the geometric mean of ve and σe the vari-
ance of ln(ve). Note that the point distribution of hy-
draulic conductivity is often modeled as a log-normal dis-
tribution [28]. We consider moderate heterogeneity char-
acterized by σ2

e = 1. The corresponding PDF of the s-
Lagrangian velocities vs is obtained from (6) by flux-weighting
as

ps(v) =
1

v
√

2πσ2
e

exp

{
− (ln(v)− µs]2

2σ2
e

}
, (9)

where µs = µe + σ2
e .

In order to investigate the impact of strong hetero-
geneity of velocity point values, we consider a velocity
distribution that is characterized by power-law behavior
at low velocities [77,72]

pe(v) ∝ 1

v0

(
v

v0

)γ−1
, (10)

and a sharp cut-off for v � v0. We consider exponents
0 < γ < 1 and also −1 < γ < 0. In the latter case, it is

understood that the Eulerian velocity PDF has another
cut-off at low velocity values, otherwise it is not normal-
izable. The corresponding PDF of s-Lagrangian velocities
is again obtain from (6) and behaves at small values as

ps(v) ∝ 1

v0

(
v

v0

)β−1
, (11)

where β = γ + 1 is between 0 and 2. Note that no lower
cut-off is needed for values of β between 0 and 1. For the
numerical simulations and detailed analytical calculations,
we employ a Gamma-distribution of velocities, which is
characterized by the same properties at small v as (11)
and an exponential cut-off for v � v0.

2.2.2 Correlation
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Fig. 2. 1D correlation function. Comparison between a weakly
correlated (dotted line) and a strongly correlated (dashed line)

medium. The solid line is x−
1
2 . Results for the case `0 = 1

2
and

α = 1
2
, respectively.

The covariance function of the velocity fluctuations
v′e(x) = ve(x)− 〈ve〉 is defined by

C(x− x′) = 〈v′e(x)v′e(x
′)〉. (12)

The velocity variance is σ2
v = C(0). The correlation func-

tion is defined by C (x) = C(x)/σ2
v . For the disorder sce-

narios under consideration it factorizes into

C (x) = X (x)Y (y)Z (z), (13)

where X (x) denotes the correlation function in x-direction
and Y (y) and Z (z), the correlation function in y and z-
directions, see Appendix B. The constant bin size d0 in
y-direction gives rise to the linear correlation function

Y (y) =

(
1− |y|

d0

)
H(d0 − |y|). (14)
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The same holds for the z-direction. For a general distri-
bution p`(`) of bin lengths, we obtain for the correlation
function in x-direction

X (x) =

∞∫
|x|

d`p`(`)

(
1− |x|

`

)
, (15)

as detailed in Appendix B.
The weakly-correlated scenario is characterized by an

exponential distribution of bins sizes

p`(`) =
e−`/`0

`0
, (16)

with `0 a characteristic scale. The correlation function in
x-direction is then obtained from (75) as

X (x) = e−|x|/`0 +
|x|
`0

E1(−|x|/`0), (17)

where E1(·) denotes the exponential integral [78]. Note
that the correlation function decays exponentially at large
distance, as shown in Fig. 2.

The strongly correlated scenario is characterized by a
Pareto distribution of bin sizes

p`(`) =
α

`0

(
`

`0

)−1−α
(18)

for ` > `0. We consider 0 < α < 2. Thus, we obtain
from (75) the correlation function

X (x) =


(
|x|
`0

)−α (
1− α

α+1

)
|x| ≥ `0

1− α|x|
`0(α+1) |x| < `0.

(19)

It decays slowly as a power-law for ` ≥ `0 as shown in Fig.
2.

2.2.3 Ergodicity

We shortly discuss here the ergodicity of the media model
under consideration, this means the equivalence of spa-
tial and ensemble sampling of the velocity point values.
It is clear that sampling along the y-direction is equiva-
lent to ensemble sampling by construction of the random
medium. Also, it is clear that spatial sampling along x
is equivalent to ensemble sampling for distributions p`(`)
for which 〈`〉 < ∞. Here we briefly discuss the case of
〈`〉 = ∞, which is the case for 0 < α < 1 in (18). The
velocity PDF p̂e(v) is defined through spatial sampling
along the x-direction as

p̂e(v) = lim
L→∞

1

L

L/2∫
−L/2

dxδ[v − ve(x)]. (20)

Because of the geometry of the medium, it can be written
as

p̂s(v) = lim
L→∞

1

L

nL∑
i=0

`iδ(v − vi), (21)

where nL is the number of bins needed to cover the dis-
tance L. It is given by

nL = max(n|xn ≤ L), xn =

n∑
i=0

`i. (22)

For 0 < α < 1, the average bin size out of a sample of n
scales as 〈`〉n ∝ n1/α−1, while the average number of bins
to cover the distance L is 〈nL〉 ∝ Lα [1]. Thus, we obtain

p̂s(v) = lim
n→∞

1

n

n∑
i=0

δ(v − vi) = pe(v), (23)

this means spatial and ensemble sampling are equivalent.

3 Average particle motion

We derive the average particle dynamics based on the
streamwise formulation (5) of particle motion. To this
end, we disregard particle displacements perpendicular to
the mean flow direction, which implies that vs(s)/vs(s) is
aligned with the x-direction. This is justified because the
streamline tortuosity is small due to the medium geome-
try and flow boundary conditions as discussed in Sect. 2.2.
Furthermore, it has been demonstrated that transverse
dispersion is asymptotically zero for purely advective trans-
port in d = 2 dimensional porous media [79]. We use the
geometric structure of the Eulerian velocity to coarse grain
the particle motion in time and space. Flow velocities in
different bins here are statistically independent. Thus, we
coarse grain the distance s along streamlines using the
longitudinal bin size as

sn =

n∑
i=1

`i. (24)

Thus, we obtain for the space-time particle motion the
recursion relations

xn+1 = xn + `n, tn+1 = tn +
`n
vn
, (25)

where we defined xn = x(sn), tn = t(sn) and vn = vs(sn).
The transition time is defined by τn = `n/vn. We consider
a flux weighted extended particle injection at x = 0 whose
extension is much larger than the bin size perpendicular
to the flow direction. Thus, the PDF of particle velocities
is given by ps(v) at all steps. The impact of different initial
conditions is discussed in [58].

The relations (25) define a coupled CTRW [3]. Tran-
sition time and length are kinematically coupled through
velocity, which itself is distributed [80,71]. This type of
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coupled CTRW is similar to Lévy walks [81–86] in that
transition time and length are kinematically coupled. The
Lévy walk, however, prescribes a transition time PDF ψ(t)
and determines the transition length for a constant or dis-
tributed velocity kinematically [85]. Here, the distribution
of transition lengths is dictated by the medium geometry,
and the distribution of velocities by the medium hetero-
geneity and flow equation as discussed in Sect. 2.2. Thus,
here the joint PDF ψ(x, t) of transition lengths and times
is given in terms of the PDF of transition length and ve-
locities as

ψ(x, t) =

∞∫
0

dvψ(t|x, v)p`(x)ps(v), (26)

where the conditional PDF of transition time given the
transition length and velocity is ψ(t|x, v) = δ(t − x/v).
Evaluating the integral gives for ψ(x, t) the expression

ψ(x, t) =
x

t2
p`(x)ps

(x
t

)
. (27)

The marginal PDF of transition times is denoted by ψ(t).
The coarse-grained particle position at a given time t is xnt

where nt = sup(n|tn ≤ t). Its PDF is given by P (x, t) =
〈δ(x−xnt

)〉 where the angular brackets denote the average
over all particles in a single realization and the average
over the disorder realizations. The evolution of P (x, t) is
determined by the following set of equations [3,12]

P (x, t) =

t∫
0

dt′R(x, t′)

∞∫
t−t′

dt′′ψ(t′′) (28a)

R(x, t) = δ(x)δ(t)+∫
dx′

∞∫
0

dt′R(x′, t′)ψ(x− x′, t− t′), (28b)

where R(x, t) is the probability per time that a particle
arrives at a turning point at (x, t). Thus, the right side
of Eq. (28a) denotes the probability that a particle just
arrives at x at time t′ times the probability that the next
transition takes longer than t − t′. Equation (28b) is an
expression of particle conservation in (x, t)-space.

Note that xnt denotes the coarse grained particle po-
sition at a turning point of the CTRW. In order to obtain
the actual particle position at time t, we interpolate by
the velocity in the bin such that [80,71]

x(t) = xnt + vnt(t− tnt), (29)

where tnt
is the arrival time at the turning point right

before t. The average particle density is now given by

c(x, t) = 〈δ[x− xnt
− vnt

(t− tnt
)]〉 . (30)

This expression can be expanded to

c(x, t) =

t∫
0

dt′
∫
dx′R(x′, t′)Φ(x− x′, t− t′), (31)

where Φ(x, t)dx is the joint probability that the particle
makes an advective displacement of a length in [x, x+ dx]
during time t and that t is smaller than the time for a
transition

Φ(x, t) = 〈δ [x− vst] I (0 ≤ t < `/vs)〉 . (32)

The average can be executed explicitly by noting that τ =
`/vs and using the joint PDF ψ(x, t) of transition length
and time. This gives

Φ(x, t) =

∞∫
t

dτ
τ

t
ψ
(τ
t
x, τ
)
. (33)

The system (28) can be combined into the generalized
Master equation for P (x, t) [87,88]

∂P (x, t)

∂t
=

∫
dx′

t∫
0

dt′K(x− x′, t− t′)

× [P (x′, t′)− P (x, t′)], (34)

where the memory kernel K(x, t) is defined through its
Laplace transform [78]

K∗(x, λ) =
λψ∗(x, λ)

1− ψ∗(λ)
. (35)

Laplace transformed quantities are marked by an asterisk
in the following, the Laplace variable is denoted by λ. We
solve for P (x, t) and the particle density c(x, t) in Fourier-
Laplace space. We employ here the following definition of
the Fourier transform,

c̃(k, t) =

∫
dx c(x, t) exp(ikx), (36)

c(x, t) =

∫
dk

2π
c̃(k, t) exp(−ikx). (37)

Fourier transformed quantities are marked by a tilde, the
wave number is denoted by k. Thus, we obtain from (28)

for P̃ ∗(k, λ)

P̃ ∗(k, λ) =
1

λ

1− ψ∗(λ)

1− ψ̃∗(k, λ)
. (38)

Combining (28) and (31) gives for c̃∗(k, λ)

c̃∗(k, λ) =
λΦ̃∗(k, λ)P̃ ∗(k, λ)

1− ψ∗(λ)
. (39)

Equations (38) and (39) form the basis for the derivation
of the behaviors of the mean and variance of the particle
displacements.

3.1 Spatial moments

We study the first and the second centered moment of the
particle density c(x, t). While the first moment describes
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the position of the center of mass, the second centered
moment provides a measure of the particle dispersion.
Moreover, the temporal scaling of the mean squared dis-
placement is commonly used to discriminate the nature of
transport, with non-linear growth being considered a sig-
nature of non-Fickian transport. The jth moment of x(t)
is given by

mj(t) = 〈x(t)j〉 =

∫
dxxjc(x, t). (40)

The second centered moment, or in other words, the vari-
ance of x(t) is defined by

κ(t) = m2(t)−m1(t)2. (41)

In order to calculate the moments, we make use of the
following identity in Fourier-Laplace space [89]

m∗j (λ) = (−i)j ∂
j c̃∗(k, λ)

∂kj

∣∣∣∣
k=0

. (42)

By substituting (39) into (42) we can express the mo-
ments of the particle density c(x, t) in terms of the spatial
moments of P (x, t) and Φ(x, t). In Appendix C we derive
the following Laplace space expressions for the first and
second displacement moments

m∗1(λ) =

λ∫
0

dλ′
µ∗1(λ′)

λ2[1− ψ∗(λ)]
(43)

m∗2(λ) =

λ∫
0

dλ′
2λ′µ∗2(λ′)

λ3[1− ψ∗(λ)]
+

2µ∗1(λ)m∗1(λ)

1− ψ∗(λ)
, (44)

where the ith spatial moment of ψ(x, t) is denoted by

µi(t) =

∫
dxxiψ(x, t). (45)

3.2 First arrival time distribution

The time of first arrival of a particle at a position x is
defined by

ta(x) = sup [t|x(t) ≤ x], (46)

where x(t) is given by (29). The arrival time PDF is de-
fined by

f(t, x) = 〈δ[t− ta(x)]〉. (47)

Using (25) and (29), the arrival time can be written as

ta(x) =

nx−1∑
i=0

τi +
x− xnx

vnx

, (48)

where xn is given by (25) and nx = sup(n|xn ≤ x). The
first arrival time PDF satisfies a similar equation as c(x, t)
and is given by

f(t, x) =

x∫
0

dx′
t∫

0

dt′R(x′, t′)Θ(x− x′, t− t′), (49)

where Θ(x, t)dt is the joint probability that the particle
makes an advective displacement of length x in a time in
the interval [t, t+dt] and that x is smaller than a transition
length

Θ(x, t) =
〈
δ
(
t− x

v

)
I(0 ≤ x < `)

〉
. (50)

In analogy with Φ(x, t), we can relate this joint probability
to the joint PDF of transition lengths and times without
interpolation as follows

Θ(x, t) = x−1
∞∫
x

d` `ψ

(
`,
`t

x

)
. (51)

4 Transport behavior

In the following, we study particle dynamics in terms of
the variance of particle displacements and first arrival time
distributions. In order to probe the impact of heterogene-
ity and spatial correlation on large scale transport, we
study three scenarios. The first one is characterized by
strong heterogeneity and weak correlation, the second by
strong correlation and weak disorder. Although driven by
different causes, transport in both scenarios is non-Fickian
and it exhibits similar behaviors. The third scenario is
characterized by both strong heterogeneity and strong cor-
relation. For each scenario, the transport behavior is inves-
tigated through numerical random walk particle tracking
simulations of the coarse-grained equations of motion (25),
and analytical expressions for the scalings of the moments
and the first arrival time distributions.

4.1 Distribution-induced anomalous diffusion

We first consider the case of anomalous diffusion induced
by a broad distribution of velocity point values charac-
terized by the power-law distribution (11), ps(v) ∝ vβ−1

for 0 < β < 2, and short-range correlation characterized
by the exponential distribution of transition lengths (16).
This scenario accounts for frequent changes in the particle
velocities along trajectories, characterized by the charac-
teristic correlation scale `0.

4.1.1 Dispersion behavior

The temporal evolution of the mean squared displacement
is shown in Fig. 3 for two different values of β that corre-
spond to different degrees of heterogeneity. At short times
particles move, on average, within a correlation length,
where they maintain a constant velocity. As a result, the
mean squared displacement exhibits a ballistic growth as
κ(t) = σ2

vst
2 with σ2

vs the variance of the s-Lagrangian ve-
locity vs. The sub ballistic asymptotic behavior depends
on the velocity and thus transition time distribution. It
arises when the particles have traveled several correlation

7
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Fig. 3. Temporal evolution of the variance in case of
distribution-induced anomalous transport for β = 1

2
(solid line)

and β = 3
2

(dashed line). The second centered moments are
normalized by the variance of vs.

lengths, thus exploring the heterogeneity of the spatially
variable velocity. We observe the same behavior as for an
uncoupled CTRW in line with [80]. The explicit expres-
sions for the mean and variance of the particle displace-
ment are derived in Appendix C.2.1. For 0 < β < 1, we
find that

m1(t) ∝ tβ κ(t) ∝ t2β . (52)

The behavior for κ(t) is illustrated in Fig. 3 for β = 1/2.
Note that, as discussed in Sect. 2.2, this behavior has to
be understood in a preasymptotic sense because the Eu-
lerian velocity PDF pe(v) needs a cut-off at low velocities
to be normalizable. For 1 < β < 2, we derive for the dis-
placement mean and variance the scalings

m1(t) ∝ t κ(t) ∝ t3−β . (53)

The behavior for κ(t) is illustrated in Fig. 3 for β =
3/2. These results are consistent with those for uncoupled
CTRW [90,91,42].

Figure 4 shows the particle distributions for β = 1/2
and β = 3/2. Due to the high probability of low veloci-
ties, c(x, t) has a forward tail and strong localization at
the origin. For β = 3/2, particles are more mobile, which
manifests in a leading front and a trailing tail.

4.1.2 First arrival time distribution

Figure 5 shows the first arrival time distributions for the
exponents β = 1/2 and β = 3/2 at a distance of xc =
102`0 from the injection point. Again the case 0 < β < 1
needs to be understood in a preasymptotic sense. The
peak of the arrival time distribution for β = 1/2 is strongly
delayed compared to the one for β = 3/2 due to the higher
probability of low velocities. The tailing behavior is char-
acterized by f(t, xc) ∝ t−1−β characteristic for an uncou-
pled CTRW. This behavior can be readily understood as
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Fig. 4. Particle density at time tc = 104 for β = 1
2

(upper
panel) and β = 3

2
(lower panel). The results are obtained by a

CTRW simulation with 107 particles . Injection occurs point-
wise and impulsively at x = 0 and t = 0.

follows. The average number of steps nc needed to arrive
at the control point is xc/`0. The transition time may be
approximated by τ ≈ `0/vs, so that the transition time
PDF is approximately

ψ(t) ≈ `0
t2
ps(`0/t) ∝ t−1−β (54)

for t� `0/v0. We used (11) for ps(v). The tailing behavior
of f(t, xc) follows for 0 < β < 2 from the generalized
central limit theorem.

4.2 Correlation-induced anomalous diffusion

Here we study the case of anomalous diffusion induced by
correlation. To this end we consider the power-law dis-
tribution of transition lengths (18), p`(`) ∝ `−1−α for
0 < α < 2, and the log-normal distribution of veloci-
ties (9) for σ2

2 = 1 and µe = 0. Following the path of the
previous section, we study the temporal evolution of the
spatial moments and the first arrival time distribution to
understand the impact of correlation on the average trans-
port.

4.2.1 Dispersion behavior

Figure 6 shows the temporal evolution of κ(t) for two dif-
ferent values of 0 < α < 1 and 1 < α < 2. The degree

8
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Fig. 6. Temporal evolution of the variance in case of
correlation-induced anomalous transport for α = 1

2
(solid line)

and α = 3
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(dashed line). Dashed-dotted lines indicate ballistic
growth.

of correlation is determined by the exponent α. At early
times, most of the particles have traveled less than a corre-
lation length and, as a consequence, they have maintained
their initial velocity. The early time behavior of κ(t) is
ballistic. The asymptotic scaling behaviors are derived in
Appendix C.2.2.

For very strong correlation, this means 0 < α < 1, we
obtain

m1(t) ∝ t κ(t) ∝ t2. (55)

While the center of mass position increases linearly with
time, the variance shows still ballistic behavior. This is a
consequence of the broad distribution of correlation scales.
While a given proportion of particles have changed veloc-
ities at asymptotically long time, a large proportion still

persists in the initial velocity. In fact, for 0 < α < 1, the
mean transition length is infinite and the number of ve-
locity changes increase sublinearly with distance x as xα,
see also the discussion in Sect. 2.2.3. The number of ve-
locity changes corresponds to the number of bins needed
to cover the distance x. The resulting ballistic behavior of
the persistent particles dominates over the dispersion of
the particle that have experienced several velocity tran-
sitions. The spatial particle distribution for α = 1/2 is
shown in Fig. 7. Initial difference in the particle veloci-
ties are amplified with time due to their persistence. The
spatial distribution reflects the distribution of velocities
ps(v).

For values of α between 1 and 2, correlation is still
strong, but here the mean transition length is finite. We
obtain the following scalings for the mean and variance of
the particle displacements

m1(t) ∝ t κ(t) ∝ t3−α. (56)

Because of the strong correlation, those particles that ex-
perience low velocities as they move through regions of
low conductivity are efficiently separated from those that
move fast. Although the heterogeneity is weak and the
velocities show small variability, those velocities are kept
for a long distance. The resulting separation of particles
gives rise to the superdiffusive behavior. The correspond-
ing particle density for α = 3/2 is shown in Fig. 7. Unlike
for disorder dominated superdiffusion, see Fig. 4, here the
particle distribution does not show a dominant backward
tail. Superdiffusion is due to persistent velocity contrast
and not to slow velocities.
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Fig. 7. Particle density at time tc = 104 for α = 1
2

(solid line)
and α = 3

2
(dotted line). The results are obtained by CTRW

simulations with 107 particles . Injection occurs point-wise and
impulsively at x = 0 and t = 0.

4.2.2 First arrival time distribution

Figure 8 shows the first arrival time distributions for α =
1
2 and α = 3

2 at a detection plane located at a distance

9
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xc = 102`0 from the inlet. We observe an earlier peak
for the case α = 1

2 , which is due to those particles that
maintain a high velocity for a long distance, since this
case corresponds to the higher correlation. At late times,
both curves show log-normal tailings. This kind of behav-
ior is particularly interesting if compared to the results of
dispersion. In fact, although the variance exhibits a super-
linear growth in time, no anomalous behavior is observed
in the first arrival time distribution. In order to explain
this character, we recall that, due to the high variability
of bins lengths, a significant proportion of particles trav-
els until the detection plane xc without performing any
transition, i.e. by keeping the same initial velocity. This
proportion of particles is given by

P0(xc) =

∫ ∞
xc

d` p`(`). (57)

For the distribution of Eq. (18) we obtain P0(xc) =
(
`0
xc

)α
.

For these particles, the arrival time at xc is given by the
kinematic relationship ta = xc/v. Thus, the first arrival
time distribution can be written as

f(t, xc) = P0(xc)
xc
t2
ps

(xc
t

)
+ ..., (58)

where the dots indicate the contribution by particles un-
dergoing transitions. Since the distribution of velocities is
log-normal, f(t, xc) is asymptotically also log-normal and
this explains the tails that we observe in Fig. 8. Because
for α = 1

2 the proportion of particles that undergo no

transitions is larger than for α = 3
2 , the log-normal tailing

arises earlier.

4.3 Anomalous diffusion induced by distribution and
correlation

In this last scenario, we study anomalous diffusion induced
by both distribution and correlation. In order to do so, we
consider distributions with power-law tails for both the
transition lengths (18) for 0 < α < 2 and the velocities
(11) for 0 < β < 2. As we discussed, the case 0 < β < 1 has
to be intended in a preasymptotic sense. As we did in the
previous sections, we analyze the behavior of the spatial
moments and the first arrival time distribution to quantify
the impact of strong correlation and strong distribution on
transport.

4.3.1 Dispersion behavior

Figure 9 shows the temporal evolution of the mean squared
displacement for two different choices of the shape param-
eters α ∈ (1, 2) and β ∈ (1, 2). In particular, the cases
α < β and α > β are considered in order to understand
the relative impact of each process. At early times, par-
ticles have traveled less than a correlation length. Thus,
the variance exhibits a ballistic behavior, as particles have
maintained their initial velocity. In the large time limit,
we observe a convergence to the asymptotic regimes that
are derived analytically in Appendix C.2. We obtain for
this case

m1(t) ∝ t κ(t) ∝ t3−ω, (59)

where ω = min (α, β). This means that the asymptotic be-
havior is determined by the stronger between disorder and
correlation. Thus, for α < β the superdiffusive behavior is
due to the persistent contrast of velocities, rather than on
the retention of particles with slow velocities. Conversely,
for α > β, the impact of slow velocities becomes more
important than the persistence of different velocities.

Figure 10 shows the spatial particles density for the
two considered cases. We observe that the peak position
depends on the value of β, since smaller values correspond
to an higher probability of low velocities and, thus, to a
retarded peak. We also observe that the curves are tailed
towards the same direction, but the processes that lead
to this phenomenon are opposite. For α < β, correlation
is stronger than distribution and the tail develops itself
towards low values, in analogy to what we observed in
Sect. 4.2. For α > β, distribution dominates over correla-
tion. We observe that the same tailing as for the case of
distribution-induced anomalous diffusion (see Fig. 4, lower
panel).

Until here we have considered the case in which both α
and β are between 1 and 2. Nevertheless, a variety of differ-
ent cases may arise. In the following, we discuss different
scenarios related to different choices of the exponents α
and β, which means different degrees of correlation and
disorder. The scalings of the moments are derived in Ap-
pendix C.2.

10
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Case α ∈ (0,1), β ∈ (1,2) In this case, we derive that
the first moment and the variance scale as

m1(t) ∝ t κ(t) ∝ t2. (60)

This scenario is tantamount to the case of correlation-
induced anomalous diffusion with 0 < α < 1 described in
Sect. 4.2. Since no mean transition length exists, trans-
port behavior is fully determined by the longest bins and,
consequently, dispersion is ballistic. The net effect is that
the process (25) is decoupled.

Case α ∈ (1,2), β ∈ (0,1) We derive the following scal-
ings for the first moment and the variance of particles
displacement

m1(t) ∝ tβ κ(t) ∝ t2β . (61)

Notice that these scalings are the same that we observed
in Sect. 4.1 for 0 < β < 1. The reason for this fact is
that this case is dual to the previous. In fact, while on one
hand a mean transition length can be defined, on the other
no mean transition time exists. Thus, transport is domi-
nated by disorder and it exhibits a non-Fickian behavior
κ(t) ∝ t2β that is due to the retention of particles mov-
ing with low velocities. The strength of retention depends
on the exponent β. In particular, we observe subdiffusive
behavior for 0 < β < 1 and superdiffusive growth for
1 < β < 2.

Case α,β ∈ (0,1) In this case, the scalings of the mo-
ments depend on the relationship between α and β. In
particular, we get that the mean and the variance of par-
ticles displacement scale as

m1(t) ∝ tν κ(t) ∝ tε, (62)

where ν = min(1, β−α+1) and ε = min(2, 2+β−α). This
means that for α < β we get ballistic growth of the vari-
ance, which is analogous to the behavior that we observed
in Sect. 4.2 for 0 < α < 1. It is interesting to observe
that for α > β, a superballistic behavior arises. This very
anomalous behavior is due to the combined action of very
low velocities and the high persistence of the velocity con-
trast. However, we recall that the case 0 < β < 1 has to
be understood in a preasymptotic sense.

4.3.2 First arrival time distribution

Figure 11 shows the first arrival time distribution for two
combinations of α and β between 1 and 2. We distinguish
the cases α < β and α > β, as they correspond to the
cases in which the dominating processes are correlation
and disorder, respectively. The positions of the peaks ap-
pear shifted. This is due to the fact that for smaller values
of β the probability of encountering very low velocities is
higher. In both the considered cases, the first arrival time
distribution behaves asymptotically as

f(t, xc) ∝ t−1−β . (63)
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Fig. 9. Temporal evolution of the variance in case of anoma-
lous transport induced by both distribution and correlation for
α = 1.4, β = 1.2 (solid line) and for α = 1.6, β = 1.9 (dashed
line).
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results are obtained by CTRW simulations with 107 particles
. Injection occurs point- wise and impulsively at x = 0 and
t = 0.

As we discussed in Sect. 4.2, the tails of the distri-
bution are determined by those particles that undergo no
velocity transitions. The relative proportion of these parti-
cles is given by Eq. (57). Thus, the first arrival time distri-
bution is given by Eq. (58). Since the distribution of veloc-
ities scales as vβ−1, the distribution of arrival times scales
as t−1−β due to the kinematic relationship ta = xc/v.

5 Summary and conclusions

We investigate the origins of anomalous transport in the
flow through correlated porous media focusing on the im-
pact of disorder and correlation. We consider quenched d-
dimensional random hydraulic conductivity fields, in which
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performed at xc = 100`0.

the correlation structure is determined by a distribution of
length scales of regions of equal hydraulic conductivity K.
The spatial variability in K is mapped onto a distribution
of Eulerian velocities through the Darcy equation. Particle
transport is characterized by the series of Lagrangian ve-
locities sampled equidistantly along the streamlines, whose
statistics are related to the Eulerian velocity PDF by flux-
weighting. We show that average particle follows a cou-
pled CTRW characterized by the PDF of characteristic
length scales and the PDF of Eulerian velocities. Within
this framework, we derive analytical expressions for the
asymptotic scaling of the moments of particle displace-
ments and the first arrival time distributions or break-
through curves. In order to quantify the impact of dis-
order and correlation on average transport, we consider
three different scenarios, in which the anomalous behav-
iors are induced by disorder, correlation or both.

In the first scenario, we use an exponential distribu-
tion of bin sizes and a Gamma distribution of velocities
pv(v) ∝ vβ−1. Since the transition length PDF is sharply
peaked, in the long time limit this case is equivalent to an
uncoupled CTRW. Thus, we get that the mean squared
displacement evolves in time as κ(t) ∝ t2β for β ∈ (0, 1)
and κ(t) ∝ t3−β for β ∈ (1, 2). The first arrival time distri-
bution exhibits retarded peaks for smaller values of β that
are due to the higher probability of having lower velocities
and a tail proportional to t−1−β which is a consequence
of the generalized central limit theorem.

The second scenario accounts for the effects of strong
correlation, which is modeled through a power-law distri-
bution of bin sizes p`(`) ∝ `−1−α. For α ∈ (0, 1), because
the mean correlation length is infinite, transport is domi-
nated by those particles that undergo no transition. This
reflects itself into the observation of a ballistic growth of
the mean squared displacement and breakthrough curves
that behave asymptotically as the distribution of the in-

verse of velocities. For α ∈ (1, 2), because a mean cor-
relation length can be defined, particles undergo velocity
transitions in a finite time. Nevertheless, some very long
bins with low velocities may be encountered, which gives
rise to an efficient retention of particles that manifests it-
self in the stretching of the spatial density distribution and
in the superlinear growth of the mean squared displace-
ment κ(t) ∝ t3−α. In this case, the anomalous character
is not determined by low velocities, but by the persistence
of velocity contrasts for long distances.

In the last scenario that we consider, power-law dis-
tributed bin sizes and velocities are used. We distinguish
a variety of asymptotic behaviors that depend on the ex-
ponents α and β and thus on the relative importance of
correlation versus disorder distribution. The transport be-
havior is in general governed by the process characterized
by the heavier tails. For example, for α and β between 1
and 2, the velocity distribution dominates for β < α, while
for α < β correlation determines the asymptotic behavior
of the displacement variance. The long time behavior of
the particle arrival times is again dominated by particles
with persistent velocities, this means, particles that have
not made a velocity transition until the sampling posi-
tion. The arrival time distribution thus scales as the PDF
of inverse velocities.

In conclusion, we have characterized anomalous be-
haviors of transport in correlated porous media. These
non-Fickian behaviors are induced by heterogeneity and
correlation. We show that in some cases it is not possi-
ble to decouple the effects of these processes, even though
in general the stronger process determines the nature of
transport. This work sheds some new light on th mech-
anisms underlying anomalous transport in porous media,
which may aid in identifying their footprints from exper-
imental data. Future work will address the generalization
of the derived approach in presence of diffusion and local
scale dispersion.
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A Eulerian and s-Lagrangian velocity PDFs

Here we show the derivation of the s-Lagrangian PDF from
the Eulerian PDF. The latter is defined as

pe(v) = lim
V→∞

1

V

∫
Ω

dx δ[v − ve(x)] , (64)

where V is the volume of the region Ω. We define the
s-Lagrangian PDF sampled among particles as

ps(v, s) = lim
V0→∞

1

V0

∫
Ω0

da
v(a)

〈ve〉
δ (v − ve[x(s,a)]) , (65)
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where x(s = 0;a) = a, Ω0 is the region of space occupied
by the particles at s = 0, V0 its volume. Expression (65)
accounts for the flux-weighting of the initial particle in-
jection. We apply the transformation x = x(s,a) to Eq.
(64) in order to obtain

pe(v) = lim
V→∞

1

V

∫
Ω0

da J(a, s)δ (v − ve[x(s,a)]) , (66)

where J(a, s) is the norm of the determinant of the Jaco-
bian of the transformation. We notice that the following

relationship holds d
dsJ = J∇ ·

(
vs

vs

)
. Under the condition

of incompressibility, the latter reduces to

d

ds
J = −Jvs · ∇vs

v2s
. (67)

Since vs(s) = ve[x(s,a)] = ‖u[x(s;a)]‖, we obtain from
Eq. (5b)

dvs
ds

=
vs
vs
· ∇vs. (68)

Thus, Eq. (67) reduces to

d

ds
J = − 1

vs

dvs
ds

J . (69)

Since for J(a, 0) = 1, corresponding to the fact that the
starting points are mapped identically onto themselves for
s = 0, integrating the differential Eq. (69) yields

J(a, s) =
ve(a)

ve[x(s,a)]
. (70)

By substituting the latter into Eq. (66), we obtain

pe(v) = lim
V→∞

1

V

∫
Ω0

da ve(a)
δ (v − ve[x(s,a)])

ve[x(s,a)]
. (71)

We can write this expression as

pe(v) =

〈ve〉
v

lim
V→∞

1

V

∫
Ω0

da
ve(a)

〈ve〉
δ (v − ve[x(s,a)]) , (72)

where we use that v = ve[x(s, a)] as per the Dirac delta
in the integrand. Using (65) to identify ps(v) on the right
side gives Eq. (6).

B Correlation functions

In this Appendix, we derive the analytical expressions
of the correlation function for the geometry described in
Sect. 2.2. To this scope, we introduce the fluctuations of
the Eulerian velocity with respect to its average v′e(x) =
ve(x)−〈ve(x)〉, where the mean of v′e is null by definition.
For a position in the bin (n,m, p), we set x = xn + δx,

y = yn + δy and z = zn + δz, where δx is uniformly dis-
tributed between 0 and `n+1, while δy and δz are uniformly
distributed in (0, d0] and in (0, h0], respectively. Therefore,
the fluctuations can be expressed as

v′e(x) =
∑
n,m,p

v′e;n,m,pI(0 < δx ≤ `n+1)

× I(0 < δy ≤ d0)I(0 < δz ≤ h0) , (73)

where v′e;n,m,p is the value of the fluctuation in the bin
labeled with (n,m, p). The covariance function C(x − x′)
is defined as in Eq. (12). Because of the stationarity of the
field, the covariance function only depends on the relative
positions in the medium. Since the correlation is non-zero
only within the same bin, we can write

C(x− x′) =
∑
n,m,p

〈v′
2

e;n,m,pIδx(n)Iδy (m)Iδz (p)

× Iδ′x(n)Iδ′y (m)Iδ′z (p)〉 . (74)

where the primed deltas refer to the point x′ and the in-
dicator functions are 1 if the point is within the bin and
0 otherwise. The ensemble averaging is performed by in-
tegrating over the uniformly distributed variables δi and
δ′i, with i = x, y, z, as well as over the bins sizes `. By
defining ∆x = x− x′, the explicit calculation leads to

C(x− x′) = σ2
v

∞∫
|∆x|

d` p`(`)

(
1− |∆x|

`

)

×
(

1− |∆y|
d0

)(
1− |∆z|

h0

)
, (75)

and 0 for |∆y| > d0 or |∆z| > h0. where σ2
v = C(0) is the

variance of the Eulerian velocity. The correlation function
is defined by C (x) = C(x)/σ2

v . By substituting the defini-
tion into Eq. (75), we observe that the covariance function
can be factorized into

C (x) = X (x)Y (y)Z (z) , (76)

where

X (x) =

∞∫
|x|

d` p`(`)

(
1− |x|

`

)

Y (y) =

(
1− |y|

d0

)
H(d0 − |∆y|)

Z (z) =

(
1− |z|

h0

)
H(h0 − |∆z|)

represent the correlation functions in the x, y and z direc-
tions, respectively.

C Spatial moments

In the following, we derive expressions (43)-(44) for the
first and second displacement moments and the asymp-
totic scalings of the mean and variance. To this end, we
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define the jth moments of Φ(x, t) and P (x, t) as

µ
(Φ)
j (t) =

∫
dxjΦ(x, t) (77)

µ
(P )
j (t) =

∫
dxjP (x, t). (78)

C.1 Derivation of mean and variance

The relationship between the particle density with and
without interpolation is given in the Fourier and Laplace
space by Eq. (39). By substituting this expression into
Eq. (42), for the Laplace transform of the first and second
moment of the spatial density c(x, t) we get

m∗1(λ) =
λ

1− ψ∗(λ)

[
µ
(Φ)
1 (λ)µ

(P )
0 (λ)

+µ
(P )
1 (λ)µ

(Φ)
0 (λ)

]
(79)

m∗2(λ) =
λ

1− ψ∗(λ)

[
µ
(Φ)
2 (λ)µ

(P )
0 (λ)

+ 2µ
(Φ)
1 (λ)µ

(P )
1 (λ) + µ

(P )
2 (λ)µ

(Φ)
0 (λ)

]
, (80)

where the µs are the moments of P and Φ in Laplace
space. The sub-index denotes the order of the moment and
the super-index indicates the distribution. Notice that the
zero-th order moment of P (x, t) in Laplace space is given

by µ
(P )
0 (λ) = P̃ ∗(k = 0, λ). By using Eq. (38) and by

assuming an instantaneous injection of particles at t = 0,
we get

µ
(P )
0 (λ) = λ−1 . (81)

Analogously, the first and the second moments of P (x, t)
are calculated by applying the expressions for the mo-
ments (42) to the distribution of Eq. (38). Thus, we get

µ
(P )
1 (λ) =

µ∗1(λ)

λ[1− ψ∗(λ)]
(82)

µ
(P )
2 (λ) =

1

1− ψ∗(λ)

[
2µ∗1(λ)µ

(P )
1 (λ) +

µ∗2(λ)

λ

]
. (83)

The zero-th moment of Φ(x, t) is defined as the integral of
the distribution over the spatial domain. Integrating Eq.

(33) yields µ(Φ)(t) =
∞∫
t

ψ(τ)dτ , whose Laplace transform

reads

µ
(Φ)
0 (λ) =

1− ψ∗(λ)

λ
. (84)

Finally, the first moment of Φ is

µ
(Φ)
1 (λ) =

1

λ2

λ∫
0

dλ′ µ∗1(λ′)− 1

λ
µ∗1(λ) , (85)

while the second moment is given by

µ
(Φ)
2 (λ) =

2

λ3

λ∫
0

dλ′λ′µ∗2(λ′)− µ∗2(λ)

λ
. (86)

By substituting Eqs. (81), (82), (84) and (85) into Eq.
(79) we get Eq. (43) for the Laplace transform of the first
moment of particle density. Analogously, by substituting
Eqs. (81), (82), (83), (84), (85) and (86) into Eq. (80),
we get Eq. (44) for the Laplace transform of the second
moment.

C.2 Asymptotic scalings

In this section we derive explicitly the asymptotic scalings
of the first and second centered moment of particle density
for each scenario presented in Sect. 4.

C.2.1 Distribution-induced anomalous diffusion

We first show that ψ(t) scales asymptotically as t−1−β .
By definition, ψ(t) =

∫∞
−∞ dxψ(x, t). By using Eq. (27),

the distributions of bins lengths (16) and the distribution
of velocities (11), we get that the j-th moment of ψ(x, t)
scales at long times as

µj(t) ∝ t−1−β
∞∫
0

dxxj+βe−x/`0 , (87)

where µ0(t) = ψ(t). For t → ∞ the integral converges
to Γ (β + j + 1). Thus, from Eq. (87) we conclude that
asymptotically µj(t) ∝ t−1−β for j = 0, 1, 2. By making
use of Tauberian theorems, we obtain that the Laplace
transform of quantities that scale asymptotically as t−1−β

behaves for small λ as 1 − a1λ
β for β ∈ (0, 1) and as

1− a1λ+ a2λ
β for β ∈ (1, 2). Finally, if β = 1, the scaling

is 1− a1λ+ a3λ lnλ. Thus, we get

µ∗j (λ) ∝


1− a1λβ β ∈ (0, 1)

1− a1λ+ a3λ lnλ β = 1

1− a1λ+ a2λ
β β ∈ (1, 2).

(88)

The real coefficients {ai}i=1,..,3 depend on the specific dis-
tribution. By substituting the corresponding scalings into
Eq. (43) and by taking the leading orders in λ we get
the asymptotic scalings in the Laplace domain of the first
moment of particle density

m∗1(λ) ∝


λ−1−β β ∈ (0, 1)
λ−2

lnλ β = 1

λ−2 β ∈ (1, 2].

(89)

The asymptotics in real time are obtained by the applica-
tion of the Tauberian theorems, which provides the results
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listed in Table 1. Analogously, we calculate the second mo-
ment by substituting the scalings of Eq. (88) into Eq. (44)
and we get, in Laplace space

m∗2(λ) ∝


λ−1−2β β ∈ (0, 1)
λ−3

ln3 λ
β = 1

λ−3 + λβ−4 β ∈ (1, 2].

(90)

The application of the Tauberian theorems provides the
following scalings in the time domain

m2(t) ∝


t2β β ∈ (0, 1)
t2

ln3 t
β = 1

t2 + t3−β β ∈ (1, 2].

(91)

Recall that the second centered moment is given by κ(t) =
m2(t)−m2

1(t). By taking the leading orders in t, we obtain
the results that are listed in Table 1.

β ∈ (0, 1) β = 1 β ∈ (1, 2]

m1(t) tβ t
ln(t)

t

κ(t) t2β t2

ln3(t)
t3−β

Table 1. Distribution-induced anomalous diffusion: asymp-
totic scalings of first moment and variance.

C.2.2 Correlation-induced anomalous diffusion

As we did in the previous section, we start by deriving
the scaling of ψ(t). By using the PDF of transition times
and lengths of Eq. (27), the distribution of bins sizes (18)
and the velocity PDF (9), we get that the j-th moment of
ψ(x, t) is given by

µj(t) =
α`α0

t
√

2πσ2
e

∞∫
`0

dxxj−1−α

× exp

(
− [ln (x/t)− µs]2

2σ2
e

)
. (92)

We introduce the change of variable y = x/t. With this
substitution, Eq. (92) simplifies to

µj(t) =
α`α0 t

j−1−α√
2πσ2

e

∞∫
`0/t

dy yj−1−α

× exp

[
− (ln y − µs)2

2σ2
e

]
. (93)

For t → ∞ the integral converges to a constant value.
Thus, by applying Tauberian theorems in the long time

limit we get for j = 0

ψ∗(λ) ∝


1− a1λα α ∈ (0, 1)

1− a1λ+ a3λ lnλ α = 1

1− a1λ+ a2λ
α α ∈ (1, 2) .

(94)

Analogously, we find that the first moment of ψ(x, t) scales
in Laplace space as

µ∗1(λ) ∝


λα−1 α ∈ (0, 1)

1 + a3 lnλ α = 1

1− a1λα α ∈ (1, 2),

(95)

while for the second moment we get

µ∗2(λ) ∝

{
λα−2 α ∈ (0, 1]

λα−1 α ∈ (1, 2).
(96)

By substituting the scalings of Eqs. (94) and (95) into Eq.
(43), we find

m∗1(λ) ∝


λ−2 α ∈ (0, 1)
λ−2

lnλ α = 1

λ−2 α ∈ (1, 2].

(97)

By applying the Tauberian theorems, we find the scalings
in the time domain that are listed in Table 2. The scalings
of the second moments are obtained in Laplace space by
substituting Eqs. (94),(95) and (96) into Eq. (44), which
gives

m∗2(λ) ∝


λ−3 α ∈ (0, 1)
λ−3

lnλ α = 1

λ−3 + λα−4 α ∈ (1, 2].

(98)

The application of Tauberian theorems provides the fol-
lowing scalings in the time domain

m2(t) ∝


t2 α ∈ (0, 1)
t2

ln t α = 1

t2 + t3−α α ∈ (1, 2].

(99)

Finally, by using these scalings for the calculation of the
second centered moment and by taking the leading orders
in t, we get the scalings that are listed in table 2.

α ∈ (0, 1) α = 1 α ∈ (1, 2]

m1(t) t t
ln t

t

κ(t) t2 t2

ln t
t3−α

Table 2. Correlation-induced anomalous diffusion: asymptotic
scalings of first moment and variance.
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C.2.3 Anomalous diffusion induced by distribution and
correlation

In this scenario the distribution of step lengths is given by
(18), while the distribution of velocities is (11). By substi-
tuting these expressions into Eq. (27) and by calculating
the spatial moments, we get

µj(t) ∝ t−1−β
∞∫
`0

dxxj+β−α−1 exp

(
− x

vmaxt

)
. (100)

By using the change of variable y = x
vmaxt

we get

µj(t) ∝ tj−α−1
∞∫

`0
vmax

dy yj+β−α−1 exp (−y). (101)

For different values of α and β very different asymptotic
behaviors arise. In particular, we get

µj(t) ∝


tj−1−α α < β + j

t−1−ω ln t α = β + j

t−1−β α > β + j,

(102)

where ω = min(α, β). Recall that the range of the param-
eters does not allow the possibility α ≥ β + 2. Therefore,
a unique expression for the scaling of the second moment
of ψ(x, t) is found. Namely, we get µ2(t) ∝ t1−α. In the
following, we will treat four different scenarios, neglecting
the cases in which α = β because of their unlikelihood.
Nevertheless, those cases are reported in Table 3 for com-
pleteness.

Case α, β ∈ (0, 1);α 6= β By using Tauberian theorems
into Eq. (102), we find that the distribution of transition
times admits the following expansion for large times in
Laplace domain

ψ∗(λ) ∝ 1− a1λω. (103)

The first moment, given by Eq. (102) for j = 1, scales in
Laplace space as µ∗1(λ) ∝ λα−1, while the second moment
scales as µ∗2(λ) ∝ λα−2. By substituting the so-obtained
scalings into Eq. (43) and (44), we get for the first and the
second moment of particles density

m∗1(λ) ∝ λ−1−ν m∗2(λ) ∝ λ−1−µ + λ−1−ε, (104)

where ν = min(1, β − α + 1) and ε = min(2, 2 + β − α).
By applying the Tauberian theorems, we find the scalings
summarized in Table 4.

Case α, β ∈ (1, 2);α 6= β In this case, for long times Eq.
(102) can be expanded in Laplace space as

ψ∗(λ) ∝ 1− a1λ+ a2λ
ω, (105)

while the first and the second moments of ψ(x, t) scale
as µ∗1(λ) ∝ λα−1 and as µ∗2(λ) ∝ λα−2, respectively. By
applying the usual methodology, we get

m∗1(λ) ∝ λ−2 m∗2(λ) ∝ λ−3 + λω−4, (106)

After applying the Tauberian theorems and by using κ(t) =
m2(t)−m2

1(t), for the first and second centered moment of
particle displacements, we get the scalings listed in table
4.

Case α ∈ (0, 1), β ∈ (1, 2) For this scenario, by using Eq.
102 and Tauberian theorems, we get again the scaling of
Eq. (103) for ψ∗(λ) while the first and the second moment
scale as µ∗1(λ) ∝ λα−1 and µ∗2(λ) ∝ λα−2, respectively
(note that here α < β + 1). In this case, we get from Eqs.
(43) and (44)

m∗1(λ) ∝ λ−2 m∗2(λ) ∝ λ−3. (107)

The corresponding scalings in time domain are listed in
Table 5.

Case α ∈ (1, 2), β ∈ (0, 1) In this last scenario, we get
from Eq. (102) and from the Tauberian theorems

ψ∗(λ) ∝ 1− a1λβ , (108)

while the second moment of ψ(x, t) scales as µ∗2(λ) ∝
λα−2, respectively. The first moment, given by Eq. (102)
for j = 1, scales as

µ∗1(λ) ∝

{
λα−1 α < β + 1

1− a1λβ α > β + 1.
(109)

By substituting the scalings here derived into Eqs. (43)
and (44) we get in Laplace space

m∗1(λ) ∝ λ−1−β m∗2(λ) ∝ λ−1−2β . (110)

The scalings in time domain are obtained through the ap-
plication of Tauberian theorems and are listed in Table
5.

α = β ∈ (0, 1) α = β = 1 α = β ∈ (1, 2)

m1(t) t
ln(t)

t
ln2 t

t

κ(t) t2

ln(t)
t2

ln2 t
t3−α ln(t)

Table 3. Anomalous transport induced by distribution and
correlation: asymptotic scaling of the first moment and vari-
ance.
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α 6= β, α, β ∈ (0, 1) α 6= β, α, β ∈ (1, 2)

m1(t) tν t
κ(t) tε t3−ω

Table 4. Anomalous transport induced by distribution and
correlation: asymptotic scaling of the first moment and vari-
ance.

α ∈ (0, 1), β ∈ (1, 2) α ∈ (1, 2), β ∈ (0, 1)

m1(t) t tβ

κ(t) t2 t2β

Table 5. Anomalous transport induced by distribution and
correlation: asymptotic scaling of the first moment and vari-
ance.
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