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Aditya Bandopadhyaya, Tanguy Le Borgnea, Yves Méheusta, Marco Dentzb
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Abstract

Mixing fronts, where fluids of different chemical compositions mix with each other, are known to represent

hotspots of chemical reaction in hydrological systems. These fronts are typically subjected to velocity

gradients, ranging from the pore scale due to no slip boundary conditions at fluid solid interfaces, to the

catchment scale due to permeability variations and complex geometry of the Darcy velocity streamlines. A

common trait of these processes is that the mixing interface is strained by shear. Depending on the Péclet

number Pe, which represents the ratio of the characteristic diffusion time to the characteristic shear time, and

the Damköhler number Da, which represents the ratio of the characteristic diffusion time to the characteristic

reaction time, the local reaction rates can be strongly impacted by the dynamics of the mixing interface.

So far, this impact has been characterized mostly either in kinetics-limited or in mixing-limited conditions,

that is, for either low or high Da. Here the coupling of shear flow and chemical reactivity is investigated for

arbitrary Damköhler numbers, for a bimolecular reaction and an initial interface with separated reactants.

Approximate analytical expressions for the global production rate and reactive mixing scale are derived

based on a reactive lamella approach that allows for a general coupling between stretching enhanced mixing

and chemical reactions. While for Pe < Da, reaction kinetics and stretching effects are decoupled, a scenario

which we name ”weak stretching”, for Pe > Da, we uncover a ”strong stretching” scenario where new scaling

laws emerge from the interplay between reaction kinetics, diffusion, and stretching. The analytical results

are validated against numerical simulations. These findings shed light on the effect of flow heterogeneity

on the enhancement of chemical reaction and the creation of spatially localized hotspots of reactivity for a

broad range of systems ranging from kinetic limited to mixing limited situations.
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1. Introduction

Reaction fronts where two reactive fluids displace one another play an important role in a range of pro-

cesses, including contaminant plume transport and reaction, soil and aquifer remediation, CO2 sequestration
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and the development of hotspots of reaction in mixing zones [1, 2, 3, 4, 5, 6, 7]. Mixing of reactants by het-

erogeneous flows leads to the formation of geometrically-complex fronts, at which chemical reactions occur

[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], Such fronts are subjected to fluid deformation which increases the sur-

face available for diffusive mass transfer thereby enhancing effective reaction rates [19, 20, 21, 22, 23, 24, 25].

The dynamics of reactive mixing systems has been widely studied in the absence of velocity gradients.

Galfi and Racz [26] and Larralde et al. [27] studied diffusion coupled to the reversible bimolecular reac-

tion A + B 
 C for the case of initially well separated reactants at different bulk concentrations. The

mathematical insights obtained through the long-time asymptotics are that the mass of product formed,

mc, grows as mc ∼ t1/2, which is expected from the diffusive flux across the interface, while the width of

the reaction front sr grows as sr ∼ t1/6, due to the balance between the diffusive growth and the reactive

consumption. Taitelbaum et al. [28] had studied the initial time dynamics of such reactive fronts for a

bimolecular reaction and showed that the rate of production of the product grows as t1/2 as opposed to the

asymptotic long-time limit t−1. For a similar reactive front, Arshadi and Rajaram [29] found by means of

regular perturbation analysis that the growth rate of the total product mass behaves as dmc/dt ∼ t1/2 at

short times while at larger times it evolves as dmc/dt ∼ t−1/2; the transition time between the two regimes is

shown to depend on the rate constant and diffusion coefficient. Similar observations of the kinetic diffusive

regimes were observed in the work by Chopard et al. [30] who focused on quantification of the influence of

the reversible reaction in comparison to the forward reaction, with an emphasis on the formalism of cellu-

lar automata. This problem was also addressed through a mean-field formalism for species with different

reactivities by Sinder and Pelleg [31] with the product formed being immobile. Results for reactive fronts

for the annihilation reaction (A + B → Φ) were obtained through probabilistic cellular automata for a 1D

case [32] where it was shown that the reaction width grows as w ∼ t1/4. The validity of the analytical

results were then investigated for higher dimensions by Howard and Crowdy [33]. They found that the char-

acteristic time of the crossover between the initial time irreversible and the long time reversible behaviour

depends on the inverse of the Damköhler number based on the reversible kinetics rate constant. Several

other works relate to reaction-diffusion waves in autocatalytic systems (A + nB → (n + 1)B) [34] where

the front propagation velocity is obtained analytically in the long time limit. Merkin et al. [35, 36, 37]

also developed solutions for the situations of well stirred mixtures and low catalyst concentrations where

the catalyzer decays in time through a parallel reaction (B → C). Taitelbaum [38] studied the influence

of initial conditions and fluctuations on the segregation and patterns formed by such bimolecular systems.

Taitelbaum et al. [39] studied the influence of bias on the reaction kinetics of bimolecular reactive fronts.

This study was motivated by the observations of Koo and Kopelman [40] that the reaction kinetics of in-

jected fronts, i.e. without a stationary front, do not follow the analytical predictions of Galfi and Racz [26].

Park et al. [41] performed experiments to prevent the advective motion of such injections and showed that

the analytical predictions of the scalings of the reactive fronts agrees well with experimental observations of
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copper ion-complex formation reactions. Havlin et al. [42] and Bazant and Stone [43] have also considered

the scenario of diffusion-reaction kinetics for a system with one static component (for example, a solid porous

catalyst). Through analytical solutions, Taitelbaum and Koza [44] have shown that the reaction fronts for

initially well separated reactants may move forward or backward depending upon the relative diffusivity of

the two species reacting species (see also [45, 46]). Benson et al. [47] have analyzed an annihilation reaction

between two reactants to study the mixing density. Sinder and Pelleg [48] analyzed the reactive boundary

layer between a two species reversible reaction system (A↔ B) by means of a singular perturbation analysis

for fast reactions, i.e where the characteristic reaction time is much smaller than the characteristic diffusion

time. On similar lines, Sinder and Pelleg [49] analyzed a system with two competing reactions and found

analogous irreversible initial regimes followed by a crossover regime depending on the reaction kinetics. It

is shown that the reversible time regime encompasses two distinct reversible and irreversible zones near the

reaction front. When velocity gradients exist in a fluid flow, transported reactive mixtures are submitted to

repeated stretching actions that lead to the formation of elongated lamellar structures. The latter are known

to promote mixing and enhance reaction rates [19, 50, 51, 52, 53, 54, 55]. This problem was studied by Ranz

[56], who showed that the coupling of lamella deformation with diffusion can be reduced to a 1D diffusion

reaction-diffusion equation by making use of (i) the rescaled coordinate perpendicular to the direction of

lamella elongation and (ii) the so-called warped time that rescales temporal increments with the lamella

elongation to eliminate the stretching term. Qualitative insights about the coupling of stretching-enhanced

mixing and chemical reactions were obtained in [20, 57, 58] based on numerical simulations. Le Borgne et

al. [25] investigated the impact of non-uniform flow conditions on the mixing and reaction rates under such

conditions using a lamellar mixing front approach. Paster et al. [59] investigated the impact of shear upon

reaction for uniformly initial distribution of reactants with concentration fluctuations.

Fluid stretching has been shown to play a fundamental role for governing mixing in porous media

[60, 61, 62, 63, 64]. The presence of heterogeneity in the advective flow field invariably leads to lamella

formation and subsequent coalescence [65, 66, 67, 68]. Therefore, understanding the interaction between the

invading fluid and the residing fluid is imperative towards prediction of species transport in such media. For

example, Mays and Neupauer [69] have demonstrated a methodology to achieve enhanced mixing inducing

chaotic Darcy-like flow patterns. Gramling et al. [70] performed an experimental and theoretical Darcy

scale study of the reaction rate and moving front width in a porous medium for the irreversible bimolecular

reaction A+B → C. They provided hints that incomplete pore-scale mixing was limiting local reaction rates,

based on the inability of a Darcy scale modeling approach to properly predict the longitudinal concentration

profiles and total mass of product. Later, de Anna et al. [24] investigated the impact of pore-scale mixing

on chemical reactions in a two-dimensional (2D) porous medium consisting of cylindrical grains allowing to

measure the 2D concentration field at the pore scale. They confirmed the role of mixing in controlling local

reaction rates and were able to quantitatively predict the temporal evolution of the measured product mass
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in the infinite Damköhler limit (i.e for fast reactions) using an upscaling theory based on the concept of

lamellar reaction front [71]. Oates [72] and later Chiogna and Bellin [73] used a concentration probability

density function (PDF) based mixing model to quantify the observed reaction rates in the experimental

setup of Gramling et al. [70].

In this work, we focus on reactive mixing of the bimolecular reaction A+B → C under shear flow, which

represents a fundamental fluid deformation and reaction process in porous media. Shear occurs for any

situations where adjacent parallel streamlines have different velocities. At the pore scale, shear is created by

strong velocity gradients near fluid-solid interfaces [24]. At the Darcy scale, shear flow is the dominant fluid

stretching mechanism governing mixing and spreading in randomly stratified media, typical of sedimentary

formations, where the horizontal correlation length is much larger than the vertical one [74, 75, 76, 77, 78].

More generally, shear plays an important role in heterogeneous porous media as one of the components

of local deformation tensors [79, 66]. While linear shear flows give rise to a linear elongation of mixing

fronts, other stretching dynamics could be considered in the same framework, such as power law [66] or

exponential [80] deformation (which implies that the length of a material line increases in time following a

power-law behaviour in time or increases exponentially). Hence, beyond the particular choice of shear flows,

the general methodology presented here for predicting the effective reaction kinetics of mixing fronts from

the coupling between the stretching dynamics and the characteristic reaction time scales is likely relevant

for more complex flows. While the impact of fluid stretching on reaction kinetics is well understood for

fast reactions [81, 25], the broad range of scales and the diversity of chemical reactions entails the need

for accounting for a wide range of reaction time scales compared to the transport time scales, that is, for

a wide range of Damköhler numbers [82, 83, 84]. Therefore, we investigate analytically and numerically

the global reaction kinetics of a mixing front with two initially separated diffusive reactants subjected to

velocity gradients of different magnitudes, for an arbitrary finite Damköhler number. In particular we are

interested (i) in the rate at which the product is formed and (ii) in the temporal evolution of the width of the

reaction front. From the analysis of asymptotic behaviors of pertinent equations we establish the existence of

three distinct regimes of effective upscaled reaction kinetics that result from the interplay between reaction,

diffusion and stretching. We pinpoint the transition times which demarcate the various regimes. We validate

the analytical predictions derived for the temporal scalings of the product mass and the reaction mixing

scale, i.e. the width of the reaction front, by comparison with numerical simulations.

2. Theoretical framework

2.1. System description and governing equations

We consider the scenario of two reactants A and B that are initially separated by an interface. The

system is subjected to a linear shear flow perpendicular to the initial interface characterized by a constant
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velocity gradient as shown in figure 1.a. The designated mass of reaction product grows and spreads owing to

(a) diffusion, (b) advection (imposed shear flow) and (c) reaction at the interface between the two reactants.

The rate of reaction is assumed to follow a second order kinetics given by A + B
k−→ C with k denoting

the rate constant of the chemical reaction. We consider the following two coordinate systems illustrated

in figure 1.b. The coordinate system (x, y) is fixed while the frame (x′, y′) is attached to the stretching

interface so that the coordinate x′ always corresponds to the direction perpendicular to the interface. The

shear flow in the laboratory frame is denoted by ũ = (Gỹ, 0). Owing to the action of the shear, the front

stretches about the origin as the pivot. As stretching occurs along the interfacial direction, the thickness

in the direction normal to the front decreases due to the constraint of continuity (that is, the fluid mass

conservation). In other words, stretching of the fluid along the interface is accompanied by a compression

in the perpendicular direction of the interface.
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Figure 1: General schematic and description of the system employed for a 2D simulation of reaction-diffusion in the presence

of a linear shear flow. (a) Boundaries 1 and 2 are considered to be periodic. Boundaries 3 and 4 are assigned to be no-flux for

the 2D simulation. (b) We depict the upper part of the deforming lamella owing to the action of the shear flow pivoted around

the point o, for a material line of initial width δ0 and length l̃, deforming in the flow field so that its length increases to l̃(t)

and width reduces to δ(t). In the figure, the origin is fixed, the distance moved by the point p is the local velocity times the

time. Considering a material line positioned at the center of the mixing zone in (a), we link the transport equations defined in

the 2D system presented in (a) to a 1D transport process defined in the reference frame normal to the direction of deformation

of the material line. The evolution of the system is then described as a function of a 1D coordinate x′ which is normal to the

stretching interface. The instantaneous angle with which the coordinate system has locally rotated can be found out through

the arctan of the ratio of the lengths qr and or which are mentioned in the figure.

The transport of the reactant and product concentrations, ã, b̃ and c̃ respectively (the symbols with tilde
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represent dimensional quantities) is described by the following set of advection-reaction-diffusion equations

∂ã

∂t̃
+ ũ · ∇ã = D∇2ã− k ãb̃,

∂b̃

∂t̃
+ ũ · ∇b̃ = D∇2b̃− k ãb̃,

∂c̃

∂t̃
+ ũ · ∇c̃ = D∇2c̃+ k ãb̃,

(1)

where D is a constant and represents the diffusion coefficient of the species.

Equation (1) is subjected to the following initial conditions:

ã (x̃, 0) =

 ñ0 if x̃ < 0,∀ỹ

0 otherwise
,

b̃ (x̃, 0) =

 0 if x̃ ≥ 0,∀ỹ

ñ0 otherwise
,

c̃ (x̃, 0) = 0 ∀x̃ .

(2)

The velocity field is given by ũ = Gỹex with G representing the shear rate. The boundary conditions for

the species A and B are that the top and bottom (walls 3 and 4) are no flux walls while the left and right

walls (walls 1 and 2) are periodic (the effect of this periodicity is observed in the concentration distribution

depicted in figure B.12 and figure B.12). These conditions are written down for solving for the species

transport in a finite domain keeping in mind that we want to mimick a front where ideally the two domains

are infinitely long. In such a system over a sufficient amount of time, there is no influence of time up until

which the periodic image of the concentration interacts with itself. Beyond this time, the predictions of the

2D simulations would no longer be valid for an isolated front but would represent the situation where there

is overlapping of concentration profiles (boundary effects; this would imply longer times than those shown

in figure B.12). There is, thus, no specific length scale attached to the problem; this is akin to most semi-

infinite problems for diffusion, such as observed in heat transfer and mass transfer in a semi-infinite domain

[85, 86]). Hence, to address the problem computationally for the 2D simulations, we have enforced periodic

boundary conditions at the left and right boundaries in such a way that over the time of observation, the

system does not experience the effects of the boundaries.

We nondimensionalize equation (1) by the following quantities:

x = x̃/δ̃0 , t = t̃D/δ̃20 , u = ũ/Gδ̃0 , φ = φ̃/ñ0 , φ = a, b, c, (3)

where in the system under consideration we choose the characteristic length to be of δ0, the characteristic

time scale of the system based on the characteristic length, δ̃20/D, the characteristic velocity of the system

is proportional to the rate of shear times the characteristic length. Proceeding based on this nondimension-
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alization, and defining the Péclet and Damköhler numbers as,

Pe =
τD
τa

=
Gδ̃20
D

,

Da =
τD
τr

=
kñ0δ̃0

2

D
,

(4)

which represent respectively the ratio of the typical diffusion time scale τD = δ̃20/D to the typical advection

time scale τa = G−1 and that of the typical diffusion time scale to the typical reaction time scale respectively

τr = (kñ0)−1, equations (1) and (2) may be then recast as:

∂a

∂t
+ Pe u · ∇a = ∇2a− Da a b,

∂b

∂t
+ Pe u · ∇b = ∇2b− Da a b,

∂c

∂t
+ Pe u · ∇c = ∇2c+ Da a b,

(5)

subjected to the initial conditions

a (x, 0) =

 1 if x < 0,∀y

0 otherwise
,

b (x, 0) =

 0 if x ≥ 0,∀y

1 otherwise
,

c (x, 0) = 0 ∀x .

(6)

As we shall see later, depending on the relative strengths of Pe and Da the system evolution exhibits markedly

different dynamics.

Note that the scenario where there is no definite length scale associated with the particular problem

under consideration can be tackled in the following manner. A system lacking a characteristic lengthscale

is akin to analysis pertaining to semi-infinite domains where the pertinent lengthscale must be obtained

by a combination of the physically relevant parameters in the system [87]. In the context of the present

problem, we may define two length scales based on the combination of the diffusion coefficient, D, the

reaction kinetics constant, k, and the average shear rate, G. If the system is thought to evolve based on the

balance of diffusion and reaction kinetics the length scale δ̃0 may be recast as
√
D/(kn0), which is obtained

by comparing the characteristic lengthscale of molecular diffusion during the time τr, i.e.
√
Dτr, over the

the characteristic reaction time τr = 1/(kn0). On the other hand, if the system evolves based on the balance

of diffusion and stretching, the lengthscale δ̃0 may be recast as
√
D/G, which is obtained by comparing the

characteristic diffusion lengthscale to the stretching time τs = 1/G. In the present derivation, we do not

restrict ourselves to the choice of δ̃0 thereby allowing us to generalize the analysis presented here.
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2.2. Reaction-diffusion system in a Lagrangian frame

To derive analytical expressions quantifying the coupling between reaction, diffusion and shear , we

simplify the equations and make them more tractable by reducing the dimensionality of the problem [56, 88,

89, 54]. In order to provide a better insight into the fundamental process of stretching augmented reactive

mixing, we convert the 2D transport problem defined in the laboratory frame to a one-dimensional (1D)

transport problem defined in the local Lagrangian frame attached to a particular material point and rotating

with the flow. A material line is a purely kinematic quantity, independent of the species residing in it [56],

but we choose the material line that coincides with the middle line of the mixing zone (see Figure 1), which

is initially oriented along the direction y. Considering a volume of initial constant thickness δ̃0 around the

material line (also referred to as a lamella, see figure 1), the elongation of the line by shear deformation ρ̃(t)

leads to a simultaneous compression of the thickness δ̃ (owing to incompressibility), such as [56, 90]. We

therefore confine our attention to the region at the interface of the two reactants and track it as it evolves

with the flow.

The advection-diffusion-reaction equation (1) for species ã may be simplified by expressing it in the

coordinate system (x̃′, ỹ′) attached to a material line (Figure 1) [e.g., 56] . The simultaneous effect of

compression, diffusion and reaction is quantified in a Lagrangian frame as follows (see Appendix A for the

detailed derivation):
∂ã

∂t̃
− Ωx̃′

∂ã

∂x̃′
= D

∂2ã

∂x̃′2
− kãb̃, (7)

and correspondingly for species b̃ and c̃. We have defined here the stretching rate

Ω = −1

δ̃

dδ̃

dt̃
, (8)

where δ̃ is the width of a material strip whose initial orientation is perpendicular to the flow direction and

whose initial length is δ̃0 (see Appendix A),

δ̃ =
δ̃0√

1 +G2t̃2
. (9)

It is observed in equation (7) that species evolution is only in the direction transverse to the elongation,

that is x̃′. This stems from the fact that for a linear shear, concentration gradients are zero in the direction

of elongation and exist only in the direction of compression [19, 56]. Even for arbitrary flows equation (7)

is still a good approximation since concentration gradients are continuously maximized in the direction of

compression [54, 66] (Please refer to Appendix A for a discussion).

We can make further progress by transforming the above equation into a diffusion-reaction system by

making use of the following rescaled variables [56]:

z =
x̃′

δ̃
and θ =

∫ t̃

0

dτ
D

δ̃(τ)2
. (10)
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where θ is referred to as the warped time which represents the integral diffusion time over the lamella

thickness. The transformed spatial coordinate, z, must not be confused with the z coordinate in the usual

orthogonal three-dimensional Cartesian system. We obtain:

∂ã

∂θ
=
∂2ã

∂z2
− kãb̃ δ̃

2

D
,

∂b̃

∂θ
=
∂2b̃

∂z2
− kãb̃ δ̃

2

D
,

∂c̃

∂θ
=
∂2c̃

∂z2
+ kãb̃

δ̃2

D
.

(11)

Furthermore, a nondimensionalization may be employed for the lamella thickness as δ = δ̃/δ̃0, and by taking

advantage of equation (8) we may simplify the definition of the warped time to obtain the form

θ =

∫ t̃

0

dτ

δ̃ (τ)
2
/D

=
D

δ̃20

∫ t̃

0

dτ
(
1 +G2τ̃2

)
=
D

δ̃20

(
t̃+

G2t̃3

3

)
. (12)

where we have used the fact that at t̃ = 0, θ = 0. Using this, and the aforementioned nondimensional

scheme, we may write the governing equations in the Lagrangian frame for the three species in the frame

attached with the deforming material line as

∂a

∂θ
=
∂2a

∂z2
− Da abδ2,

∂b

∂θ
=
∂2b

∂z2
− Da abδ2,

∂c

∂θ
=
∂2c

∂z2
+ Da abδ2,

(13)

where the Péclet number and Damköhler numbers have already been defined in section 2.1 and

δ =
1√

1 + Pe2t2
(14)

from equation (9)).

The solution for the set of equations (11) yields the temporal and spatial evolution for the concentration

fields of the different species. The initial conditions specified for solving equation (11) are that as z → −∞,

a = 1, b = 0 and that as z → ∞, b = 1, a = 0. The aim of the present work is to depict how the chemical

kinetics constants in conjunction with the lamella stretching impact the mass of the product formed in such

a scenario.

We may write the mass of the product as m̃c =
∫∞
−∞ dx̃′c̃(x′)l(t), where l(t) represents the length of the

interface. In a nondimensional sense, it may be recast as

mc =
m̃c

n0l0δ̃0
=

∫ ∞
−∞

dz c(z)lδ =

∫ ∞
−∞

dz c(z) , (15)

where we have made use of the fact that lδ = 1 (owing to the incompressibility condition which imposes

that the amount of longitudinal stretching be the inverse of the amount of transverse compression in order

to conserve the material volume).
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Another quantity of interest is the reactive mixing scale, which quantifies the spatial localization of

chemical reactivity in a mixing front [27]. A small reactive mixing scale denotes the existence of localized

hotspots of chemical reaction, while a large reactive mixing scale implies that the reaction zone is diffuse.

The reactive mixing scale is thus an important characteristic of reactive fronts, which, as discussed in the

following, depends non-trivially on Pe, Da and on the observation time. The reactive mixing scale can be

estimated from the width of the reaction front from the second moment of the reaction rate across the front

as

s̃r =

∫∞−∞ dx̃′ x̃′
2
Daab∫∞

−∞ dx̃′ Daab

1/2

, (16)

In a nondimensional sense, it can be written in terms of the integral in the transformed coordinate, z, as

sr =

(∫∞
−∞ dz z2Da ab∫∞
−∞ dzDa ab

)1/2

δ . (17)

Note that the reactive mixing scale is different from the conservative mixing scale [91, 66] since it is affected by

chemical reactions that tend to reduce it through consumption of reactants. Besides the temporal evolution

of the mass of the product, the temporal evolution of the width of the reaction zone is also of interest and

is analyzed in section 4. The initial reaction width, i.e. sr(0), will be referred to as s0.

3. Analytical predictions for the temporal evolution of the mass of product

Having discussed the general 1D framework used to investigate the transport of reactive species, we focus

on the various limits of the temporal evolution of the mass of product. Let us remind here that the Péclet

number denotes the ratio of the typical diffusion time scale (over the distance δ0) to the typical advection

time scale (due to the fluid shear), while the Damköhler number denotes the ratio of the typical reaction

time scale to the typical diffusion time scale. This implies that the dimensionless time t = t̃/τD allows us to

distinguish the dynamics of the systems in terms of the relative values of Pe−1 = τa/τD and Da−1 = τr/τD.

The first scenario, termed as weak stretching scenario, is defined by a system for which Da−1 < Pe−1. In

such a scenario, 3 different time regimes can be distinguished. The first regime occurs for a dimensionless time

t � Da−1. Here the reaction dynamics is determined by the interaction of diffusion and reaction kinetics

since the time is small compared to the characteristic reaction time. In the second regime, occurring for

Da−1 < t < Pe−1, the reaction is diffusion limited since the time is large compared to the reaction time (i.e.

reactions are fast) but small compared to the characteristic shear time (i.e. stretching does not play a role

yet). In the asymptotic long time regime, t � Pe−1, the shear action of the flow field is activated and the

reaction kinetics is controlled by stretching-enhanced diffusion.

The second scenario, termed as the strong stretching scenario is defined as Pe−1 < Da−1. The first

regime, characterized by a dimensionless time t� Pe−1 is similar to the first regime in the weak stretching
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case. The system is dominated by the interaction of diffusion and reaction kinetics. The second time regime,

for which Pe−1 < Da−1, sees a reaction behavior that results from the interaction of the reaction kinetics

and stretching enhanced diffusion as time is large enough for stretching to be activated but small compared

to the characteristic reaction time. This regime is particularly interesting as stretching and reaction kinetics

are fully coupled. In the long time regime, t � Da−1, the reaction behavior is fully limited by stretching-

enhanced diffusion as reaction kinetics is no longer limiting.

As detailed in the introduction, reaction front kinetics have been investigated mostly in the limits t �

Pe−1 (no shear) or t � Da−1 (fast reactions under shear), which represents only a subset of the range of

possible regimes described above. In the following we derive the temporal evolution of the product mass for

all the aforementioned regimes.

3.1. Weak stretching scenario: Da−1 < Pe−1

For a dimensionless time t � Pe−1 shear does not affect the reactive transport behavior as both the

elongation ρ and the width δ are approximately constant (see equation (9)). Thus, the evolution of the

product c can be represented by the diffusion reaction equation

∂c

∂t
=
∂2c

∂x2
+ Daab. (18)

Hence, this regime is akin to the case where there is no imposed flow field [27]. Conversely for t� Pe−1, shear

plays an important role in increasing the area available for diffusive mass transfer, and enhancing chemical

gradients by compression. In the following, we discuss the three regimes separated by the characteristic

times Da−1 and Pe−1.

3.1.1. Reaction-diffusion regime (negligible shear): t� Da−1

In this regime, the initial profiles of a and b both evolve due to diffusion while the impact of reaction

is still weak. In such a case, the concentration profiles of the two reactants can be approximated by the

diffusive profiles [85]

a =
1

2
(1 + erf(x/2

√
t)), (19)

b =
1

2
(1− erf(x/2

√
t)), (20)

Thus, in this regime where we can neglect the effect of shear, we may write the evolution of c, inserting

equation (19) and (20) in equation (18), as

∂c

∂t
=
∂2c

∂x2
+ Da

1

4

[
1− erf

(
x

2
√
t

)2
]

(21)

which, in the vicinity of the interface, i.e. the origin (where most of the product is formed) may be further

simplified as
∂c

∂t
=
∂2c

∂x2
+ Da

1

4
. (22)
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We may integrate this over space to obtain the temporal evolution of the mass of product formed as

∂mc

∂t
=

[
∂c

∂x

]∞
−∞

+
Da

4
sr (23)

wherein the second term on the right hand side has a contribution from Da/4 which is concentrated near

the interface (at the origin), while sr represents the reactive mixing scale. The first term on the right hand

size is zero on account of the fact that the concentration profile decays away from the front towards either

reactant so that ∂c/∂x(x → ±∞) = 0. Now, at such times where t � Pe−1 and t � Da−1, the growth of

the reactive mixing scale is only diffusion controlled, which leads to the growth of the reactive mixing scale

as sr ∼
√
t. Thus, we arrive at the evolution of mc by integrating equation (23) in time as

mc ≈
Da

4
t3/2. (24)

This result is equivalent to that obtained by Arshadi and Rajaram [29] in the early time regime of a

reaction front with no shear.

3.1.2. Diffusion limited regime (negligible shear at intermediate times): Da−1 < t < Pe−1

In order to determine the behavior at longer times (where the reactions are fast and the influence of

the shear is still not present; this regime is similar to the case at long times in the absence of any imposed

flow), we follow the lead of Larralde et al. [27]. For completeness, we summarize here the main steps of the

derivation and the key results. We begin by representing the concentration of the product as a perturbation

on the diffusive case. Formally, we first observe that the concentrations of the two reactants may be written

as a = F + g and b = g where F = a− b satisfies the conservative equation (by noting that subtracting the

two concentration fields eliminates the nonlinearity of the reaction term)

∂F

∂t
=
∂2F

∂x2
. (25)

where g represents the concentration perturbation. Consequently, the governing equation for g may be

represented as
∂g

∂t
=
∂2g

∂x2
− Da g

(
erf

(
x√
4t

)
+ g

)
(26)

which may be simplified by neglecting the nonlinear contribution from g2 (since g is considered to be

a perturbation to F ) and linearizing erf(x/
√

4t) for times so large and the point of interest such that

x/
√

4t� 1, we obtain
∂g

∂t
≈ ∂2g

∂x2
− Da g

x√
πt

. (27)

At times sufficiently long for the temporal derivative to be negligible, the time behaves as a parameter to

the Airy differential equation given by: ∂2g
∂x2 −Da g x√

πt
= 0. The solution to this may be written by resorting

to an Airy function, as [27]:

g ∼ f (t)Ai
(
λ
x

t1/6

)
, λ =

(
Da√
π

)1/3

. (28)
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We may assume a power-law representation for the function f(t) so that the form for the concentration

perturbation is represented as g = ψtαAi(λx/t1/6). By equating the form of the nonlinear term in (26) and

the spatial derivative term on the right hand side of equation (28), we see that α = −1/3 and ψ = 1/λ.

Thus, the perturbation to the concentration is found out as

g ∼ t−1/3

λ
Ai

(
λx

t1/6

)
. (29)

The above may be further simplified for the case of large enough x such that λx� t1/6 to yield

g ∼ t−1/3

λ

(
λx

t1/6

)−1/4
exp

(
−2

3

(
λx

t1/6

)3/2
)

, (30)

while the reaction term may be recast based on Eq.(27)) to yield

R ∼ Da
x√
t

t−1/3

λ

(
λx

t1/6

)−1/4
exp

(
−2

3

(
λx

t1/6

)3/2
)

. (31)

The time integral of the reaction term may then be obtained as I ∼
∫∞
0
Rdt, which, according to equa-

tion (31) can be written as

I ∼
∫ ∞
0

dtDa
x√
t

t−1/3

λ

(
λx

t1/6

)−1/4
exp

(
−2

3

(
λx

t1/6

)3/2
)

. (32)

Upon simplification, equation (32) can be written, in leading order, as

I ∼ λt1/3
(
λx

t1/6

)−3/4
exp

(
−2

3

(
λx

t1/6

)3/2
)

(33)

Towards determining the mass of product, we appeal to the above equation and equation (15) to obtain

mc = 2

∫ ∞
0

dxλt1/3
(
λx

t1/6

)−3/4
exp

(
−2

3

(
λx

t1/6

)3/2
)

where the factor of 2 appears when the spatial integration is done from the lower bound 0 instead of −∞

while keeping in mind that the integral is symmetric for the concentration perturbation. The integral can

be evaluated by making the change of variable β = λx/t1/6 to obtain

mc ≈ t1/22

∫ ∞
0

dβ exp

(
2

3
β3/2

)
β−3/4 ≈ 8t1/2 . (34)

The general observation is that the temporal evolution of the mass of the product formed in this regime

becomes independent of the Damköhler number, which is expected for this regime that is purely diffusion-

limited. We note here that the integral appearing in equation (34) comes out to be 2
∫∞
0
dx exp(2x3/2/3)x−3/4 =

2/3 × (25/631/6π/)Γ(5/6) whose approximate value is 7.94, and which we further approximate as 8 in the

equation above. This result is in line with the derivation of Larralde [27] and of Arshadi and Rajaram [29]

for a reactive front with no shear.
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3.1.3. Shear-enhanced reactive mixing regime: t� Pe−1

We now turn our attention to the case where the imposed velocity gradient has significant bearing on

the dynamics of the reaction-diffusion system. Towards analyzing this, we begin with equation (11) and

move ahead with the logic similar to that employed in section 3.1.2. In z− θ coordinates, which account for

the effect of shear-induced elongation and compression of the interface, we may write the evolution of the

perturbation to the concentrations of a and b, as in equation (26), as

∂g

∂θ
=
∂2g

∂z2
− Da

1 + Pe2t2
g

(
erf

(
z√
4θ

)
+ g

)
, (35)

which can be further simplified by neglecting the nonlinear contribution of the g2 term to yield

∂g

∂θ
=
∂2g

∂z2
− Da

1 + Pe2t2
g

z√
πθ

. (36)

For t > Pe−1, we can approximate 1/1 + Pe2t2 ≈ 1/Pe2t2. We consider the system in the x′ and t coordinates

which are easily transformed by recalling that z = x′/δ ∼ x′Pe t and θ ∼ Pe2t3/3, obtaining

∂g

∂t
=

∂2g

∂x′2
− Da

√
3

π
g
x′

t
. (37)

The solution to equation (37) may be obtained (in analogous manner to that in section 3.1.2) as

g ≈ t−1/3

λ′
Ai

(
λ′x′

t1/6

)
, (38)

where λ′ = (Da
√

3/π)1/3. Proceeding, we may write the rate of reaction term as

R = Da
x′

t1/2
g ≈ λ′3 x′

t1/2
× t−1/3

λ′
Ai

(
λ′x′

t1/6

)
, (39)

which we may simplify to obtain

R ≈ λ′
(
λ′x′

t1/6

)
t−2/3Ai

(
λ′x′

t1/6

)
. (40)

Proceeding further, we may integrate the above expression in space and time to obtain

mc ≈ λ′t1/32

∫ ∞
0

dz

(
λ′x′

t1/6

)−3/4
exp

(
−2

3

(
λ′x′

t1/6

)3/2
)

, (41)

the evaluation of the integral over the z space necessitates converting the groups of the variables into the

form of γ = (λz)/(Pe t7/6) (the conversion of the variable from x′ in terms of z results in the appearance of

Pe through the relation z ∼ x′Pet as noted earlier). Performing this, we obtain from equation (41) that

mc ≈ 8Pe t3/2 . (42)

This expression shows that, as expected, the impact of the shear action of the flow leads to a stronger

increase in the product mass than that due to pure diffusion as given by equation (34). This result is

validated against numerical simulations in section 6.
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It is interesting to note however that the scaling is the same as in the kinetics limited regime (equation

25). For the weak stretching scenario, discussed in this section, the effects of kinetics limitation, due to finite

reaction times, are confined to the domain of dimensionless times t � Da−1, while the effects of mixing

enhancement by shear are confined to the domain t � Pe−1. Hence, as Da−1 < Pe−1, these two domains

are disjoint and these two effects are decoupled. As discussed in the next section, this is not the case for the

strong stretching scenario, which leads to new scaling laws.

3.2. Strong stretching scenario: Pe−1 < Da−1

In the strong stretching scenario, the shear time scale Pe−1 is smaller than the characteristic reaction

scale Da−1. In this scenario, the diffusion-limited reaction regime Da−1 < t < Pe−1 does not exist. Instead,

we find a new regime characterized by the interaction of stretching-enhanced mixing and reaction. It must

first be noted that for a dimensionless time t � Pe−1 the effect of stretching, as manifested through the

presence of the term δ2 in the reaction term (where we recall that δ = 1/
√

1 + Pe2t2), is weak, and thus

the approximate equations assuming 1 + Pe2t2 ≈ 1 result in the analysis seen in section 3.1.1. Essentially

this implies that in the initial time, the system behaves as if there is no imposed shear. On the other hand,

in the long time regime (t� Da−1), the reaction behavior is the same as the one obtained in section 3.1.3,

i.e. that of shear-enhanced reactive mixing with no kinetics . In the following, we therefore only study the

reaction behavior in the intermediate regime (Pe−1 < t < Da−1) in which the effect of flow stretching and

kinetics limitations are both non-negligible. We thus begin the analysis through equation (13) in terms of

z − θ coordinates:
∂c

∂θ
=
∂2c

∂z2
+ Daabδ2 , (43)

As in section 3.1.1, approximating the profiles of a and b by diffusive profiles, which are weakly affected by

reaction, and linearizing close to z = 0, this expression can be integrated over z ans simplified to obtain

(using the arguments that ∂c/∂z(z → ±∞) = 0)

∂mc

∂θ
≈ Da

4
δ2sr . (44)

Note that this expression is based on the same approximations as equation (23) but it is here written in

{θ, z} coordinates to account for shear. Recalling that dθ/dt = 1/δ2, we can rewrite equation (44) as

∂mc

∂θ
≈ Da

4

(
dθ

dt

)−1
sr =⇒ ∂mc

∂t
≈ Da

4

√
θ . (45)

where we have made use of the fact that during this warped time, the diffusive growth of the width is

proportional to
√
θ. By utilizing the form of the warped time, θ =

(
t+ Pe2t3/3

)
∼ Pe2t3/3, we finally

obtain

∂mc

∂t
≈ DaPe

4
√

3
t3/2 =⇒ mc ≈

DaPe

10
√

3
t5/2 . (46)
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Hence, it is observed that the coupling of shear-enhanced mixing and kinetics limitations leads to a strong

acceleration of the effective kinetics, which is faster than all previously known regimes. Consistently, the

mass produced is proportional to both Da and Pe.

Figure 2 synthesizes the different regimes expected from the analysis for the scaling of the mass of

produced in mixing fronts. The new coupled stretching and kinetics regime, that shows accelerated mass

production mc ∼ PeDat5/2, appears to cover a significant part of the diagram. The presented analytical

derivations thus provide a unified theoretical framework covering the full space of Pe, Da and t parameters.
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Figure 2: Diagram synthesizing the different regimes predicted for the scaling of the mass of product. The y−axis represents

the two vertical separations of weak stretching and strong stretching when Da−1/Pe−1 < 1 and > 1 respectively. The x−axis

is also demarcated by the regimes of negligible shear and strong shear through t/Pe−1 < 1 and > 1 respectively. We recall

that t is the dimensionless time t = t̃D/δ̃20 .

3.3. Transition times

In this section, we quantify more precisely the transition times between the different regimes discussed

above. Quite naturally, in the absence of any imposed shear flow, we would expect the presence of only one

dimensionless transition time at Da−1 between the kinetics-limited regime, discussed in section 3.1.1, and

the diffusion-limited regime, discussed in section 3.1.2. The interest of the problem under consideration lies

in configurations with significant imposed stretching. Depending on the relative strength of the stretching

and reaction kinetics, we may have various transitions occurring as time progresses. We shall discuss these

in details below.
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Let us first consider the scenario of weak stretching Da−1 < Pe−1. In this case, the system is expected

to have two transitions. The first transition occurs between the early time kinetics-limited regime and the

intermediate diffusion-limited regime, while the second transition occurs between the intermediate diffusion-

limited reaction regime and the long time shear-enhanced reactive mixing regime. Towards determining

the first transition time we must have an overlap of the product formed between these regions so that

Da/4t3/2 = 8t1/2 (see sections 3.1.1 and 3.1.2)). This yields the dimensionless transition time as tDa1 =

32/Da. Consequently, the mass of product at this transition may be found out as mc,Da1 = 45/
√
Da.

Moving on to the second transition from the diffusion-limited reaction regime (section 3.1.2) to the long

time shear-mixing-limited reaction regime (section 3.1.3), we equate the masses of product for the two

regimes, obtaining 8t1/2 = 8Pet3/2, which yields a characteristic dimensionless time tPe1 = Pe−1. In this

case the mass of product at the transition is given by mc,Pe1 = 8Pe−1/2.

In the second scenario, we consider the situation with strong imposed stretching Da−1 > Pe−1. In

this scenario, we still expect to have two transitions. The first transition will be from the kinetics-limited

regime to the intermediate coupled stretching enhanced mixing and kinetics limited regime while the second

transition will be from this intermediate regime to the long time shear-enhanced mixing regime with no

kinetics limitation. At the first transition time, we must have an equality of the masses of product determined

in the two regimes Da
4 t

3/2 = PeDa
10
√
3
t5/2, which yields a dimensionless transition time tPe2 = 1

Pe
5
√
3

2 ; at this time

the mass of the product is found out to be mc,Pe2 = Da
Pe3/2

1
4

(
5
√
3

2

)3/2
. Similarly, at the second transition,

we have PeDa t5/2

10
√
3

= 8Pet3/2. The resulting characteristic transition time is tDa2 = 1
Da80

√
3, corresponding

to a mass of product at the dimensionless transition given by mc,Da2 = 8 Pe
Da3/2

(80
√

3)3/2.

4. Temporal dynamics of the reactive mixing scale

We now consider the temporal behavior of the reactive mixing scale sr, which characterizes the spatial

extent of the zone where reactions take place (equation (16)). The mixing of two separated reactants creates

a hotspot of reaction at the interface, which may be highly localized in space. This can be due to i) slow

diffusion, ii) fast reactions, which implies that reactants are immediately consumed as they interpenetrate

each other, and iii) compression of the interface due to shear deformation. In the following, we quantify the

interplay of these different processes that determines the evolution of the reactive mixing scale.

4.1. Dynamics of the reactive mixing scale in the absence of shear flow

For the scenario where there is no imposed velocity gradient, the evolution of the reactive mixing scale

at sufficiently long times has been mathematically demonstrated earlier [27]. For completeness, we mention

it here. It was seen in 3.1.1 that the initial scaling of the reactive mixing scale, for t < Da−1, is expected

to be diffusion controlled since reactions are too slow to affect the diffusive growth of the interpenetration
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zone of the two reactants, resulting in

sr ∼
√
t. (47)

After this first regime, for t > Da−1, reactions can be considered to be fast compared to the observation time.

Hence, the progression of the reactive mixing scale is impeded by consumption of the diffusive reactants.

Therefore it evolves at a much slower rate. The temporal scaling of the reactive mixing scale can be estimated

by considering the form of the reaction rate in equation (40), which follows a scaling form R = h(t)f(x/t1/6).

In this case, the similarity variable is x/t1/6 and the reactive mixing scale, defined by the second moment

of R in equation (16), is expected to follow a scaling [27]

sr ∼ t1/6. (48)

4.2. Reactive mixing scale dynamics with imposed flow: strong stretching regime, Pe−1 < Da−1

In the scenario of strong stretching, we focus on times larger than Pe−1 because before this characteristic

time the reactive mixing scale is expected to be diffusion controlled, a case which has been discussed above.

For times t < Da−1, reaction can be considered to be too slow to affect the progression of the reactive mixing

scale. Hence, we can apply the same approximation as in the above case but in the z− θ coordinates, which

account for shear deformation. In analogy to equation (47), the reactive mixing scale is expected to grow as

zr ∼
√
θ (diffusion-limited growth) where zr denotes the reactive mixing scale in the z − θ coordinates (we

recall that z = x′/δ). Therefore, the reactive mixing scale in the x′ coordinate is

sr ∼ δ
√
θ . (49)

We utilize the above functional relationship to arrive at a governing equation for the width. Therefore, we

differentiate this with respect to time, t, to obtain

1

sr

∂sr
∂t

=
1

δ

∂δ

∂t
+

1

2s2r
. (50)

The above equation governs the compression and diffusion of a front for the case of strong stretching at

times t < Da−1. For t > Da−1, the expected scaling is the same as discussed in the previous section at long

times (equation (48)).

Note that equation (50) is the same as for the conservative mixing scale [60, 66], which is consistent with

the fact that reactions are to slow to affect the progression of the front in this regime. Qualitatively, the

first term depicts the compression of the reactive mixing scale due to the axial stretching and the associated

perpendicular compression. On the other hand, the second term depicts the increase in the reactive mixing

scale due to diffusion broadening at times where the reaction is occurring. The balance of these two terms

is reached at the mixing time [52, 54]. Before the mixing time, compression is expected to dominate over

diffusion, while the opposite situation develops after the mixing time for linear shear flows. The mixing
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time can be estimated by recalling that we must have, at the transition, the balance between the width

compression (the first term on the right hand side of equation (50)) and the diffusive growth (the second

term on the right hand side of equation (50)). In the compression regime, the width of the reaction zone

is given by the solution of 1
sr
∂sr
∂t ∼

1
δ
dδ
dt . which trivially yields the solution as sr ∼ δ. We may thus write

1
δ
dδ
dt ∼

1
2δ2 (where we have utilized the fact that sr ∼ δ at the transition). Simplifying this, we obtain the

mixing time as tm ∼ Pe−2/3 [60].

In summary, in the compression regime, Pe−1 < t < Pe−2/3, the reactive mixing scale is expected to

evolve by compression as sr ∼ s0√
1+Pe2t2

. In the diffusion regime, Pe−2/3 < t < Da−1, it is expected to grow

diffusively as sr ∼
√
t. For t > Da−1, the progression of the reactive mixing scale is expected to be impeded

by the consumption of reactants as described in the previous section and the mixing scale is expected to

grow as sr ∼ t1/6.

4.3. Reactive mixing scale dynamics with imposed flow: weak stretching, Da−1 < Pe−1

We now consider the weak stretching scenario, for which the reaction time scale tDa1 is reached earlier

than the characteristic stretching time scale, tPe1 . To derive the temporal scaling of the reactive mixing

scale in this regime, we appeal to the long time solution of equation (36), which can be expressed as,

g ∼ f(t)Ai

(
x′Da1/3

δ(1 + Pe2t2)1/3
√
πθ

1/3

)
. (51)

where f(t) is a function that depends only on time. Similarly to equation (31), this leads to a general form

of the reaction rate, such as,

R = Da
x′

t1/2
g ∼ h(t)

x′

sr
Ai

(
C
x′

sr

)
(52)

where h(t) is a function that depends only on time, C is a constant, so that the functional form of the

reaction width may be written as

sr ∼ δ(1 + Pe2t2)1/3θ1/6 (53)

Upon taking the log and differentiating equation (53), we obtain

1

sr

∂sr
∂t

=
1

δ

∂δ

∂t
− 2

3

Pe2t

(1 + Pe2t2)
+

1

6θ

dθ

dt
(54)

Thus, noting that 1
δ
dδ
dt = Pe2t

1+Pe2t2
, dθ
dt = 1/δ2 and writing θ as a function of sr through equation (53), we

obtain the compression-diffusion equation in the case of weak stretching as

1

sr

∂sr
∂t

=
1

3δ

∂δ

∂t
+

(1 + Pe2t2)2/3

6(t+ 1/3Pe2t3)2/3s2r
(55)

The compressive term on the right hand side of this equation is weak as compared to the diffusive expansion

(as seen from the prefactor of 1
3 in equation (55)) which is absent in equation (50).
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We must also reiterate that the derivation shown above is strictly speaking true for the long time be-

haviour (since we have appealed to the long time Airy function behavior for the concentration perturbation).

This leads asymptotically to the sr ∼ t1/6 behavior. Moreover, we shall see through the numerical results

that at early times, the reaction width is completely governed by the compression term 1
δ
dδ
dt seen in equa-

tion (50). Essentially it means that the first term appearing through the long time analysis scenario of the

compression-diffusion equation (55) does not play any role in determining the reaction mixing scale. Rather,

in the initial moments, it is simply governed by the differential equation

1

sr

∂sr
∂t

=
1

δ

∂δ

∂t
(56)

For completeness, we still attempt to evaluate the mixing time for this scenario for which 1
3δ
∂δ
∂t ∼

(1+Pe2t2)2/3

6θ2/3s2r
. Upon substituting the form of sr ∼ δ1/3 in the compression regime and equating these two

terms we obtain tm ∼ Pe−2/3, which is the same as for the strong stretching regime.

The expressions derived here provide governing equations for the reactive mixing scale that allow quan-

tifying the spatial localization of chemically reactive zone across mixing fronts. While equation (50) is the

same as for the conservative mixing scale, equation (55) is different, which quantifies the limitation of the

growth of the mixing scale by the consumption of reactant through chemical reactions. Regardless of the

regimes described in section 4.3 and 4.2, the mixing time is always equal to Pe−2/3, which is the same as for

conservative mixing.

The dilution index quantifies the rate of mixing of a conservative scalar and has been utilized in recent

times for the quantification of shear-induced-dilution [79]. In this regard, we may utilize the results obtained

from the lamella approach to determine the dilution index. In Appendix C, we have depicted how the

principles described herein may be employed to do so. As is proven, the minimum dilution occurs at a

mixing time that is identical to that obtained in the preceding paragraph.

5. Numerical simulation of equations in the Lagrangian frame

In order to test the analytical expressions derived for the mass of product formed and the reactive mixing

scale, we solve the set of equations (13) by means of a Chebyshev spectral collocation method [92]. This

methodology has been employed in recent times to address a large assortment of nonlinear PDEs. Towards

its implementation, we have to note that the domain is rescaled by L, where L is chosen sufficiently large over

the desired observation time so as to prevent the boundary effects to affect the system evolution for the time

span of interest. We denote the rescaled spatial variable as ẑ = z/L. The governing equations are subjected

to the initial condition for a as a (ẑ, 0) = 1 ∀ẑ ∈ (0, 1) and 0 otherwise. The initial condition for b is given

by b(ẑ, 0) = 1 − a(ẑ, 0) while for the species c we have the initial condition as c(ẑ, 0) = 0 everywhere. The

boundary conditions are a(1, θ) = 0, a(−1, θ) = 1, b(1, θ) = 1, b(−1, θ) = 0 and c(±1, θ) = 0. The method
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involves discretizing the 1D domain into the Gauss-Lobatto discretized grids represented by ẑi = cos (iπ/N),

where N represents the total number of intervals chosen for the solution. We make use of the Chebyshev

differentiation matrices to represent the spatial derivatives. In a time discrete form (with the superscript k

denoting the kth time level), the discretized equation for the species a may be represented as

ak+1 − ak

∆θ
= [axx]

k+1 − Da akbk
(
δk
)2

(57)

We may obtain the time-discrete equations for the evolution of species b and c along similar lines. Briefly

speaking, the governing equations for the three species are expanded in the form of n Chebyshev polynomials

of the first kind over the discretized domain ẑ as

a (ẑ) ≈
n∑
l=0

AlTl (ẑ) (58)

We may write the discretized form of the reaction-diffusion equations as

ak+1
i + ∆θ [axx]

k+1
i = aki − Da aki b

k
i

1

1 + Pe2(tk+1)
2

bk+1
i + ∆θ [bxx]

k+1
i = bki − Da aki b

k
i

1

1 + Pe2(tk+1)
2

ck+1
i + ∆θ [cxx]

k+1
i = cki + Da aki b

k
i

1

1 + Pe2(tk+1)
2

(59)

where the subscript i represents the value of the variable at the i− th node while the superscript k denotes

the k − th time step. The initial and boundary conditions for equation (59) may be written as

a0i = 1 ∀x > 0, b0i = 1− a0i , c0i = 0

akN = 1, ak0 = 0, bkN = 1, bk0 = 0, ckN = 0, ck0 = 0 .
(60)

The spatial derivatives are represented by means of the Chebyshev differentiation matrices, D, with (D a)

representing the first derivative of the vector a, (D2 a) representing the second derivative of the vector a and

so on. The boundary conditions of the discretized domains are incorporated by altering the first and last rows

of the pertinent differentiation matrix, respectively. The MATLAB files for obtaining the spatiotemporal

evolution of the concentration profiles and other derived parameters can be made available upon request.

In the appendix we have demonstrated the validity of the numerical methodology presented here against

full 2D simulations performed in the finite element framework of COMSOL Multiphysics. It may be seen

from the figures that the simulations are in excellent agreement. The methodology presented here requires

modest computational resources in comparison to the full 2D simulations [92]. In the following, we use this

1D numerical model of diffusion, compression and reaction in the direction transverse to the front to explore

the space of Pe and Da and validate the analytical expressions derived in the previous section.
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6. Discussion

In this section we shall attempt to shed light on the temporal scaling of the mass produced and trends

observed for the transition times among the different regimes as obtained from the theoretical discussion in

this work, and compare it against the numerical results obtained by means of the 1D Chebyshev spectral

collocation method. We shall first focus on the cases of no imposed flow and imposed flow (with the two

subcases of weak stretching and strong stretching). We then proceed to study the temporal evolution of the

reactive mixing scale for the cases of no shear and shear while attempting to quantify the observed temporal

evolutions by means of the compression-diffusion equation proposed in section 4.

6.1. Temporal evolution of the mass of product

6.1.1. No shear scenario

For completeness, we first depict the temporal evolution of the mass of product for the case where there

is no imposed flow. In figure 3(a) we depict the temporal variation of the mass of the product formed for

different Damköhler numbers (Da =0.1, 1, 10, 100). We observe from figure 3(a) that the initial scaling

obtained from the numerical simulation does corroborate excellently with the theoretical predictions made

in section 3.1.1; in the initial reaction-diffusion regime (reaction kinetics dominated regime), the mass scales

as mc ∼ Dat3/2, as predicted analytically. Essentially we observe that as Da increases, there is a concomitant

increase in the product mass produced. Beyond the transition time tDa1 = 32/Da the mass scaling is no more

limited by reaction kinetics and evolves as per the scaling mc ∼ t1/2, corresponding to the diffusion-limited

regime, as theoretically obtained in section 3.1.2. In accordance to the theoretical predictions, it is seen from

figure 3(a) that beyond the time tDa1 , mc becomes independent of the Damköhler number. Clearly, this

underpins the fact that beyond the transition time, the evolution is limited by diffusion and not dictated

by the reaction kinetics term. In figure 3(b), we depict the temporal evolution of the rescaled mass of the

product mc/mc,Da1 as a function of the rescaled time t/tDa1 . The curves depicted in figure 3(a) collapse on

top of each other, thus confirming the validity of the theoretical predictions of the rescaling of the transition

time and the mass of the product formed at that particular transition time.

6.1.2. Weak stretching scenario

We now proceed to analyze the weak stretching scenario Da−1 < Pe−1. In figure 4 we depict the

temporal evolution of the mass of the product formed for Pe = 0.1 and Da = 0.1, 1, 10, 100. Initially all

the curves increase as per the scaling mc ∼ t3/2, indicating the kinetics-limited regime. After this initial

scaling, depending on the magnitude of Da, a transition from the mc ∼ t3/2 scaling to the mc ∼ t1/2 scaling

is observed. The dependence of the transition time on Da is consistent with the predicted relationship

t ∼ Da−1. Then at around t ∼ Pe−1 all the curves merge together to follow a mass scaling in the form t3/2,

which is consistent with the expected shear-enhanced reactive mixing regime. For the case Da = Pe = 0.1,
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Figure 3: (a) Temporal evolution of the mass of product formed for Da = 0.1, 1, 10, 100 in the case where Pe = 0, as obtained

from the Chebyshev spectral method. (b) Rescaled temporal evolution of the mass of product formed for Da = 0.1, 1, 10, 100

for the case where there is no externally imposed flow. Towards rescaling the aforementioned variables, the time has been

rescaled as t/(32/Da) while the mass has been rescaled as mc/(45/
√
Da).

the intermediate regime does not exist and the system transits directly from the kinetics limited regime to

the long-time shear-enhanced reactive mixing regime (wherein both the regimes have a temporal scaling of

mc ∼ t3/2). Besides this, we also notice that, in accordance to the theoretical prediction, the long time
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Figure 4: Temporal evolution of the product mass for Pe = 0.1 for Da = 0.1, 1, 10, 100. The three distinct regimes, reaction

controlled, diffusion controlled and stretching controlled, are observed when the two transition times are separated (i.e. Pe <

Da). As Pe becomes comparable to Da, the intermediate regime of diffusion-limited growth is not observed.

behavior of mc is independent of Da. Upon rescaling the curves of figure 4 by the first transition time

tDa1 = 32/Da for the time axis, and the mass of product at this time mc,Da1 ≈ 45/
√
Da, they collapse into

each other (figure 5(a)) for the first two regimes (i.e. for t < tPe1). This confirms the validity of the predicted

scalings for the first transition time tDa1 . In figure 5(b) we observe that the curves for different Pe (and

different Da as well) collapse onto each other for the later two regimes (i.e. for t > tDa1) when we rescale

time for the the curves in figure 4 by the second transition time tPe1 ≈ Pe−1 and the mass of the product

formed by mc ≈ 8Pe−1/2.

We remark that all the observations are in complete agreement with the theoretical predictions presented

in section 3. The regime Da−1 < Pe−1 thus essentially decouples the effect of stretching, active for t > Pe−1,

from the effect of kinetics limitations, which are significant for t < Da−1. In what follows, we shall consider

the case where the fluid stretching is coupled to the chemical reactions, i.e. the strong stretching scenario

where Pe−1 < Da−1.

6.1.3. Strong stretching scenario

In figure 6(a) we investigate the strong stretching scenario Pe−1 < Da−1. We consider the temporal

evolution of mc for the cases where Pe = 100 and Da = 0.1, 1, 10, 100. For t < Pe−1, we observe that

the evolution of mc scales as mc ∼ t3/2. After this dimensionless time, stretching becomes significant

while reaction kinetics is still a limiting factor since t < Da−1. Hence, in this intermediate regime we
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Figure 5: (a) Scaled mass of product vs time mc/mc,Da1 as a function of t/tDa1 , for Pe = 0.1 and Da = 0.1, 1, 10, 100 at the

first transition time for weak stretching, tDa1 . (b) Scaled mass of product vs time, for Pe = 0.1 and Pe = 1 for Da = 10, 100 at

the second transition time for weak stretching, tPe1 .

observe the predicted accelerated scaling mc ∼ t5/2, induced by the coupling between kinetics limitation

and stretching. This first transition is confirmed by rescaling time by tPe2 = 5
√

3Pe−1/2 and mass by

mc,Pe2 = (5
√

3/2)3/2/Pe3/2, which collapses the curves together (please refer to figure 7 (a)). The second
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Figure 6: (a) Temporal evolution of the product mass for Pe = 100 and Da = 0.1, 1, 10, 100. As opposed to the case considered

in figure 4, we consider the effect of strong stretching, thus allowing the system to undergo the transition into the stretching

controlled regime at early times. (b) Temporal evolution of the product mass for Da = 0.1 and Pe = 100, 10, 1, 0.1.

transition from mc ∼ t5/2 regime to mc ∼ t3/2 regime is not visible on a single simulation due to very

long time of simulation required. This transition is however visible when collapsing the different simulations
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together through rescaling time by tDa2 ≈ 80
√

3/Da and mass by mc,Da2 ≈ 8(80
√

3)3/2Pe/Da3/2 (figure

7(b)).

Note that the intermediate scaling is not observed for Pe = Da = 100, since the system transitions directly

from the early time kinetics-limited regime with no significant stretching to the stretching enhanced reactive

mixing regime with no kinetics limitation, which both scale as mc ∼ t3/2. The agreement with theoretical

derivations is further confirmed by the series of simulations performed for Da = 0.1 and Pe = 0.1, 1, 10, 100

(figure 6(b)). The transition tPe2 is readily seen in this case when considering the trends of the transition

from the mc ∼ t3/2 regime to the mc ∼ t5/2 regime as Pe is increased. For the situation for which Da ∼ Pe,

we see again that the region in which there is a coupling of the reaction kinetics and stretching vanishes as

expected. Figure 7(a) clearly depicts that when the time and the mass of the product are rescaled by tPe2

and mc,Pe2 respectively, we observe that the curves in figure 6(b) collapse onto each other for the first two

regimes (i.e. for t < Da−1). On the other hand figure 7(b) clearly depicts that when the time and the mass

of the product are rescaled by tDa2 and mc,Da2 , we obtain a good collapse of the curves depicted in figure

6(a) for the other later two regimes (i.e. for t > Pe−1).

6.2. Temporal evolution of the reactive mixing scale

In figure 8 we depict the temporal evolution of the reactive mixing scale, sr as a function of time for

configurations of strong stretching as manifested through a low Damköhler (Da = 0.1) and a Péclet that

is larger than the Damköhler (Pe = 0.1, 1, 10, 100). We observe a good agreement with the compression-

diffusion equation elucidated in section 4.2. There is an initial diffusion controlled growth of the reactive

mixing scale until the time Pe−1. After this time we observe a compression (the reactive mixing scale

decreases), followed by a transition at t ∼ Pe−2/3 to the sr ∼ t1/2 regime.

In figure 9 we depict the evolution of the reactive mixing scale as a function of time for configurations

of weak stretching with Da = 100 and Pe = 0.1, 1, 10, 100. It may be observed from figure 9 that at small

times the reactive mixing scale grows at a rate which is limited by diffusion until the time t ∼ Pe−1 at

which a compression occurs in the system. This is most prominently seen in the case of Pe = 100 and

Pe = 10. In between the stretching time Pe−1 and and the mixing time Pe−2/3 we observe that the impact

of the stretching is to compress the reactive mixing scale. This compression occurs until the mixing time

tm ∼ Pe−2/3, beyond which we observe a growth of the reactive mixing scale as sr ∼ t1/6. The latter

is expected since the dimensionless time is larger than the Da−1 and hence the expansion of the reaction

mixing scale is impeded by the rate of consumption of the reactants. The solution of equation (55) is seen

to be valid after the reactive mixing time. However it is unable to predict the observed compression. This

may be attributed to the fact that equation (55) is derived by taking into consideration the scaling form

at large times (please refer to section 4.3). It is however observed that the compression-diffusion equation

(equation (50), derived in section 4.2) is able to predict the early time behavior for the curves to a good
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Figure 7: (a) Rescaled mass of product, mc/mc,Pe2 , vs rescaled time, t/tPe2 , for Da = 0.1 (strong stretching) and Pe =

0.1, 1, 10, 100 at the first transition time, tPe2 . (b) Rescaled mass of product, mc/mc,Da2 , vs rescaled time, t/tDa2 , for Pe = 100

(strong stretching) and Da = 0.1, 1, 10, 100 at the second transition time, tDa2 .

approximation. Consequently, this observation suggests that the chemical reactions do not affect the early

time behavior of the reactive mixing scale.

Moving beyond the extreme cases of Pe and Da in figure 10 we represent the temporal evolution of the
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Figure 8: Temporal evolution of the reactive mixing scale for a case for which Pe is larger than Da. We have chosen Da = 0.1 and

depicted the reactive mixing scales for Pe = 1, 10, 100. The black filled markers corresponds to the mixing time tm = Pe−2/3

while the white filled marker corresponds to the time Pe−1 for Pe = 10 and 100. The solid lines represent the solution from

the 1D Chebyshev spectral collocation method while the dashed lines represent the prediction from the compression diffusion

equation (50)

reactive mixing scale for a situation where Pe and Da are moderate and not much different from each other

in a hope to outline the transition from one kind of behavior to the other kind of behavior. For this case we

have chosen Da = 10 and Pe = 1. The solid line represents the numerical solution while the dash-dot line

represents the solution obtained from equation (50) while the dashed line represents the solution obtained

from equation (55). It may be clearly observed that the initial evolution of the reactive mixing scale is

reasonably predicted by equation (50) while beyond the overlap of the two curves, the curve is depicted in

a better fashion by (55). The crossover in behavior occurs at the the mixing time scale, which in this case

is close to 1.

7. Conclusions

This study provides analytical expressions of upscaled effective reaction rates in the presence of shear

flow. These expressions quantify the coupling between mixing limitations, governed by fluid stretching and

diffusion and quantified by the Péclet number, and kinetic limitations, quantified by the Damköhler number.

It is seen that velocity gradients promote mixing by elongating the interface available for diffusive mass

transfer and increasing concentration gradients. As discussed in this study, the coupling of this phenomenon

with a broad range of characteristic reaction time scales is non-trivial. We have thus quantified the impact
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of the Damköhler and Péclet numbers on the effective reaction kinetics of mixing front subject to shear

deformation. Different regimes have been identified theoretically in this temporal behavior, as well as the

transition times between them. Through the functional dependency of the reactive mixing scale on time, we

have analyzed the spatial localization of reactivity as a function of time, Damköhler and Péclet numbers.

We have also proposed an efficient and fast numerical scheme based on a Chebyshev spectral collocation

method in order to tackle the nonlinear reaction-advection-diffusion problem numerically, which has allowed

us to verify successfully all our theoretical predictions.

While previous works had mostly focused on the cases of Pe = 0 with variable Da or Da = ∞ with

variable Pe, the theoretical framework presented here spans the full space of Pe and Da (see figure 2). In

the case of a stretching that is weak in comparison to the reaction, i.e. for Pe < Da, the effects of kinetics

limitations and mixing enhancement by shear are essentially decoupled. Kinetics limitation is dominant

in the early time regime for t < tDa1 = 32/Da, while stretching enhanced mixing is dominant in the late

time regime t > tPe1 = 1/Pe. In the intermediate regime reactions are limited by diffusion, leading to the

classical diffusive scaling. In the case of a stretching that is strong in comparison to the reaction kinetics

, i.e. for Pe > Da, we have shown the existence of an intermediate regime at times tPe2 < t < tDa2 , with

tPe2 = 1
Pe5
√

3/2 and tDa1 = 1
Da80

√
3, where stretching enhanced mixing and kinetics limitations are strongly

coupled. This leads to an accelerated effective kinetics with mc ≈ PeDa
10
√
3
t5/2.

The presence of a background velocity gradient affects the evolution of the reactive mixing scale, which

defines the region around the interface between the two reactants where reaction mostly occurs. In the

absence of an imposed shear, the reactive mixing scale initially grows as sr ∼ t1/2, due to control by

molecular diffusion. Beyond the time tDa1 this growth slows down as sr ∼ t1/6 due to consumption of

reactants by the chemical reaction. The presence of a velocity gradient affects this evolution by introduction

a regime of compression in the temporal evolution of the reactive mixing scale. We have attempted to

formalize the nature of this evolution of the reactive mixing scale by introducing a compression-diffusion

equation for each of the two different cases of weak and strong stretching. We have shown that the reactive

layer is compressed between the characteristic stretching time t ∼ Pe−1 and the mixing time tm ∼ Pe−2/3, at

which diffusion balances compression. Beyond this time the reactive mixing scale evolves as sr ∼ t1/6 in the

case of weak stretching and sr ∼ t1/2 in the case of strong stretching. The compression-diffusion equations

are able to predict the nature of the evolution of the reactive mixing scale in their respective domains of

validity with reasonable accuracy.

The results presented in this work represent a step towards understanding how complex stretching

processes found in particular in porous media interact with the reactivity of transported solutes to determine

the dynamics of upscaled effective kinetics and the degree of spatial localization of reactive hotspots. While

the presented results are directly relevant to 2D porous media where linear deformation has been observed

[81], they may also be extended to power law deformation [66] and exponential deformation [80]. Such
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stretching dynamics may be related to topological metrics such as the Okubo-Weiss (OW) parameter [79].

The presented methodology, developed here for a constant velocity gradients, may be extended to spatially

variable velocity gradients based on the lamella representation of mixing fronts. For any given flow field,

we may always consider a stretched front to be comprised of a large number of small elements [54]. In

this way, locally, we may address the evolution of the concentration of the species involved in the direction

perpendicular to the strip (the local moving coordinate system comprises of two directions: one direction

points along the lamella while the other is perpendicular to it). Based on the ideas in this work, we may

thus extend this framework to account for reactions between two species encountering arbitrary flow fields.

However, we must briefly mention the drawbacks of the reactive lamella approach and accordingly men-

tion a prospective road map for potential research. Since chemical reactions introduce strong non-linearities,

we assumed that a given isolated lamella does not interact with other lamellae (note that this is not an issue

for conservative mixing processes since lamella concentrations add up linearly upon overlapping). While

this hypothesis is satisfied exactly for stratified flows, the same may not hold true for other flow fields, for

example in situations where there is a severe bending of the material line which renders the evolution of

the concentration fields in that local coordinate system to be necessarily 2D instead of 1D. For such flows,

the lamella approach is expected to work best for the case of high Péclet numbers (wherein the diffusion

is small compared to advection). We have assumed that the diffusion coefficients of all the species in the

reaction are equal. This assumption allows us to make several analytical treatments to the reduced set of

governing equations in the warped coordinates and obtain underlying scaling regimes and transition times

in terms of the Péclet and Damköhler numbers. A more general formulation to study the reaction dynamics

of such a system would entail relaxation of this assumption [45, 46]. In the situation where the diffusion

coefficients are different, one would obtain travelling fronts which exhibit a rich range of dynamics. This

can potentially form the basis for further development based on this work towards identifying the impact

of diffusivity contrast on enhanced reaction kinetics in the presence of shear flows. Going beyond 2D, these

ideas may be extended to 3D flows, which are inevitable when considering groundwater flow. The evolution

of material volumes in 3D can occur either in the form of sheets or fingers, depending on the local flow

structure (see [55] for several such situations). For the former scenario, we may apply a similar procedure

for the sheets in which the direction normal to the sheets is the primary direction of species dynamics. For

the later scenario, however, we may conceptualize the fingers (or equivalently tube-like structures) in a local

cylindrical coordinate in which the axial direction is aligned along the direction of the strip and the radial

direction is the normal direction along which the species dynamics occurs. Interestingly, one possibility is

to use this framework in conjugation with information about the conductivity field of a porous media which

may be related to the temporal evolution of stretching for a given material line (cf. [93]). Thus, prospects

for further work include extending the numerical framework presented here to more complex stretching

configurations, involving spatial and temporal fluctuations in stretching rates, as well as more complicated
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reaction kinetics including multistep or higher order reactions.
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Appendix A. Transformation into a moving coordinate system

We consider a linear transformation into the coordinate system moving and rotating with the material

line,

x̃′ = A>(t)
[
x̃− x̃(t̃)

]
,

dx̃(t̃)

dt
= u[x̃(t̃)] (A.1)

where A(t̃) is an orthogonal matrix specified below in equation (A.11). Thus, concentration ã(x̃, t̃) is given

in terms of the concentration ã′(x̃, t̃) in the moving coordinate system as

ã(x̃, t̃) = ã′(A>(t̃)
[
x̃− x̃(t̃)

]
, t̃), (A.2)

and correspondingly for b̃(x̃, t̃) and c̃(x̃, t̃). Inserting (A.2) into (1) for ã(x̃, t̃) gives

∂ã′(x̃′, t̃)

∂t
+

[
dA>(t̃)

dt
A(t̃)x̃′ − u[x̃(t̃)]A(t̃)

]
∇′ã′(x̃′, t̃) + u

[
A(t̃)x̃′ + x̃(t̃)

]
A(t̃)∇′ã′(x̃′, t̃) =

D∇′ ·A>A(t̃)∇′c′(x̃′, t̃)− kã′(x̃′, t̃)b′(x̃′, t̃). (A.3)

We note that A>(t̃)A(t̃) = 1 due to the orthogonality of A. Furthermore, we expand

u
[
A(t̃)x̃′ + x̃(t̃)

]
= u

[
x̃(t̃)

]
+ ε(t̃)A(t̃)x̃′ + . . . , (A.4)

where we have defined the deformation rate tensor

εij(t̃) =
∂ui[x̃(t̃)]

∂x̃j
. (A.5)

Inserting (A.4) into (A.3) gives

∂ã′(x̃′, t̃)

∂t
+

[
dA>(t̃)

dt
A(t̃) + A>(t̃)ε(t̃)A(t̃)

]
x̃′ · ∇′ã′(x̃′, t̃) = D∇′2ã′(x̃′, t̃)− kã′(x̃′, t̃)b′(x̃′, t̃). (A.6)

The expression in the square brackets is the deformation rate tensor ε′(t̃) in the moving coordinate system.

As pointed out in [55], it is a pseudotensor.

For the simple shear flow u(x̃) = Gyex under consideration here, the deformation rate tensor is

ε(t̃) =

0 G

0 0

 . (A.7)
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A material strip ˜̀(t̃) oriented initially perpendicular to the flow direction evolves as

˜̀(t̃) = ˜̀
0

Gt̃
1

 (A.8)

where ˜̀
0 = |˜̀(t = 0)| is the initial elongation. The strip length ˜̀(t̃) = |˜̀(t̃)| is (please refer to figure 1)

˜̀(t̃) = ˜̀
0

√
1 + (Gt̃)2. (A.9)

Due to volume conservation, ˜̀(t̃)δ̃(t̃) = ˜̀
0δ̃0, the width of the strip is given by

δ̃(t̃) =
δ̃0√

1 + (Gt̃)2
. (A.10)

We transform into the coordinate system whose x′–axis is oriented perpendicular to the material strip. Thus,

the orthogonal matrix A(t̃) is here given by

A(t̃) =
1√

1 + (Gt̃)2

 1 Gt̃

−Gt̃ 1

 (A.11)

So, we obtain for ε′(t̃) the triangular form

ε′(t̃) =
1

1 + (Gt̃)2

 −G2t̃ 0

G−G3t̃2 G2t̃

 . (A.12)

Initially, the concentration is uniformly distributed along the solute front, see (6), that is, in the moving

coordinate system ã′(x̃′, t̃ = 0) = 1 − H(x̃′) and b′(x̃′, t̃ = 0) = H(x̃′) with H(x̃′) the Heaviside step

function. Due to symmetry, the species concentrations are independent of ỹ′, this means ã′(x̃′, t̃) ≡ ã′(x̃′, t̃)

and b′(x̃′, t̃) ≡ b′(x̃′, t̃). Thus, for the above initial condition, the advection-diffusion problem (A.6) accross

the strip simplifies to

∂ã′(x̃′, t̃)

∂t
− Ω(t̃)x̃′

∂ã′(x̃′, t̃)

∂x̃′
−D∂

2ã′(x̃′, t̃)

∂x̃′2
= −kã′(x̃′, t̃)b′(x̃′, t̃), (A.13)

where we have defined

Ω(t̃) =
G2t̃

1 + (Gt̃)2
=

1
˜̀(t̃)

d˜̀(t̃)

dt̃
= − 1

δ̃(t̃)

dδ̃(t̃)

dt̃
. (A.14)

For simplicity of notation, we drop the primes for the remainder of the paper.

Appendix B. Validation of 1D methodology

We present here a validation of the 1D Chebyshev spectral collocation method which has been employed

in the present work. We compare the temporal evolution of the mass of the product formed against 2D

simulations performed in the finite element framework of COMSOL Multiphysics. For the 2D simulation, we
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Figure B.11: Temporal evolution of the mass of product formed for two different cases: Da = 0.1,Pe = 10 and Da = 10,Pe = 1.

The symbols denote the results obtained from the COMSOL 2D simulations, while the solid lines are those obtained from the

1D Chebyshev collocation method (please see 5).

consider the case of a stretching front for two different cases, Da = 0.1,Pe = 10 and Da = 10,Pe = 1. The

grid spacing employed in COMSOL is 0.1 while the domain size is taken to be 20× 20. Each front is chosen

to be of size 10, which, compared to the nondimensional length 1 is large enough to prevent the periodic

boundary condition from interacting with the diffusion front in the time of interest of our observation (we

refer the reader to section 2.2 for a discussion regarding this). The minimum grid size decides the initial

width of the reaction front and, consequently, the system evolution. For the 1D spectral simulation presented

in figure B.11, we have employed a domain length of 30 with N = 384 intervals for the 1D Chebyshev spectral

collocation method. The time step in the warped time system is chosen to be ∆θ = 10−3.

If we focus on the periodic boundary condition employed, we may assume that the effects of diffusion in

the Lagrangian frame are primarily focused on the region near the interface. Only when the reactive mixing

scale becomes large enough to overlap with the reactive mixing scales of the products formed at the periodic

ends, does the assumption that z → ±∞, which signifies the semi-infinite domain as per the 1D analysis

in the present work, begins to lose its validity. Our study focuses on the behavior of the system at times

before the merging of the two fronts happens.

It appears clearly in figure B.11 that the temporal evolution of the mass of the product, mc, obtained

through the two aforementioned methods (the solution obtained through the 2D simulations in COMSOL

Multiphysics is denoted by the symbols while that obtained from the 1D methodology is denoted by the solid
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(a)

(b)

Figure B.12: (a) Surface plot of the reactant concentrations at different times during the 2D COMSOL simulation. We have

chosen Pe = 10 and Da = 10 in this case. (b) Surface plot of the product concentration at different times during the 2D

COMSOL simulation. We have chosen Pe = 10 and Da = 10 in this case.

lines) are in excellent agreement with each other for both the cases of Da = 10,Pe = 1 and Da = 0.1,Pe = 10.

In figure B.12 (a) and (b) we depict how the reactants and the products are stretched along the direction

of the shear, leading to a corresponding compression in the perpendicular direction for times t = 0.1, 0.2, 0.3

for the case where Pe = 10 and Da = 10. As time progresses, the fronts from the other periodic cells start

entering our cell of interest. Here at very large times, the fronts may come very close together so that the

reactive mixing scales may overlap [65]. The product is formed at the interface between the two fronts and

thus a larger number of bands can be observed for the surface plot of the product (figure B.12(b)).

In figure B.13, we depict the concentration distributions obtained from the COMSOL simulations in the

direction normal to the interface, and compare them with those obtained from the 1D Chebyshev spectral

collocation simulation. It is observed that for the case of small Péclet the number of peaks at t = 0.35 in

the domain depicted in figure B.13 is only one while at a higher Péclet, we observe multiple peaks. It may

be noted that so long as the concentration between the two peaks reaches zero, which implies independence

of the two peaks, the results from the 1D simulation are valid. It may also be confirmed from figure B.13

that the concentration profiles predicted from the 1D Chebyshev spectral collocation method and full 2D

simulation are in excellent agreement with each other. In the case of the 1D simulations, the boundary
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Figure B.13: Concentration profiles at t = 0.35, obtained in the direction perpendicular to the stretching interface from

COMSOL 2D simulations and the 1D Chebyshev spectral collocation method. We depict the concentration profiles for 3

different cases Pe = 1,Da = 10, Pe = 10,Da = 10 and Pe = 10,Da = 1. The presence of multiple peaks in the figure from the

2D simulation is due to the fact that the periodicity employed for the 2D simulation causes the neighbouring fronts to enter

the region of interest (this can be confirmed from the surface plots depicted in figure B.12).

condition that is implemented is in effect that of an infinite span of the domain in either directions. In the

case of 2D simulations, we have taken into account the finite length of the reaction fronts. Given that the

predictions of the methodology is applicable to a time before which the periodic fronts coalesce, the scenario

of the two simulations are essentially the same. Hence the methodology elucidated in section 5 may be

extended for complicated forms of the reactions with relative ease and with a high degree of accuracy.

Appendix C. Derivation of the dilution index for a conservative scalar

The dilution index is defined as

E (t) = exp (S (t)) (C.1)

where S (t) = −
∫
dx p (x, t) ln p (x, t) represents the system entropy and p (x, t) is the normalized concen-

tration defined as p (x, t) = c (x, t) /
∫
dx c (x, t) [79]. For a conservative scalar, the analytical solution for

the concentration distribution is obtained as [54]

c =
1

(1 + 4θ)
exp

(
−x′2

δ2(1 + 4θ)

)
. (C.2)

Utilizing this solution, we obtain the normalized concentration and system entropy in the forms

p (x, t) =
e
− x′2
δ2(1+4θ)

√
π
√

1 + 4θδ

and S (t) =
1

2
+

1

2
ln(1 + 4θ) + ln(δ) +

1

2
ln (π) ,

(C.3)
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respectively, where it is noted that the form of the stretching and warped time are as of now arbitrary.

Utilizing the specific results for the linear stretching, we obtain

E = exp

[
1

2
+

1

2
ln

(
1 + 4t+

4

3
t3Pe2

)
− 1

2
ln
(
1 + Pe2t2

)
+

1

2
ln (π)

]
. (C.4)

In order to assess the behaviour of the derivative, we attempt to find the extremum (it is observed that the

extremum is a minimum). Thus, dE/dt = 0 yields(
1

2

4 + 4Pe2t2

1 + 4t+ 4
3 t

3Pe2
− Pe2t

1 + Pe2t2

)
e

1
2+

1
2 ln(1+4t+ 4

3 t
3Pe2)− 1

2 ln(1+Pe2t2)+ 1
2 ln(π) = 0 (C.5)

which implies that
(

1
2

4+4Pe2t2

1+4t+ 4
3 t

3Pe2
− Pe2t

1+Pe2t2

)
= 0. In the limit of Pet � 1, the aforementioned expression

yields the corresponding time at which the minimum in dilution occurs to be, as t = 1/
(

21/3Pe2/3
)

, which

is the same mixing time as that obtained in section 4.
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