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A general theory for predicting the distribution of scalar gradients (or concentration dif-
ferences) in heterogeneous flows is proposed. The evolution of scalar fields is quantified
from the analysis of the evolution of elementary lamellar structures, which naturally
form under the stretching action of the flows. Spatial correlations in scalar fields, and
concentration gradients, hence develop through diffusive aggregation of stretched lamel-
lae. Concentration levels at neighboring spatial locations result from a history of lamella
aggregation, which is partly common to the two locations. Concentration differences
eliminate this common part and thus depend only on lamellae that have aggregated
independently. Using this principle, we propose a theory which envisions concentration
increments as the result of a deconstruction of the basic lamella assemblage. This frame-
work provides analytical expressions for concentration increment PDFs over any spa-
tial increments for a range of flow systems, including turbulent flows and low Reynolds
number porous media flows, for confined and dispersing mixtures. Through this decon-
struction principle, scalar increment distributions reveal the elementary stretching and
aggregation mechanisms building scalar fields.

1. Introduction

Mixing in fluids is a basic process controlling transport and chemical reactions in
many natural and industrial systems (e.g. Ottino 1989; Tel et al. 2005; Dentz et al.
2011); it remains, in random flows, a fascinating scientific challenge (Batchelor 1959;
Kraichnan 1994; Shraiman & Siggia 2000; Falkovich et al. 2001; Tartakovsky et al. 2008;
Jha et al. 2011; Ye et al. 2015). The analysis and modeling of the temporal dynamics of
concentration distributions has been the subject of numerous studies for a variety of flows.
In all of them, the repeated action of advective fluid motion is known to create complex
spatial structures, characterized by elongated lamellar (in two dimensions), or sheets (in
three dimensions) patterns which promote mixing by augmenting the area available for
diffusive transfer, and reducing mixing times (Ranz 1979; Ottino 1989; Villermaux 2012b;
de Anna et al. 2014a).

The concentration content of mixtures as they evolve towards uniformity is quantified
from the temporal evolution of the concentration Probability Density Function (PDF).
The latter is described precisely within a general frame decomposing a complex mixture
into a set of elementary lamellae (sheets) whose concentration decay under the action of
the flow stretching, and possibly merge with their neighbors in the contracting regions
of the flow, when they are not too dispersed from each other (Villermaux & Duplat
2003). Decay and aggregation compensate when the average concentration is conserved
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as in confined mixtures (Duplat & Villermaux 2008), while a lack of aggregation for a
given flow stirring strength leads to dilution of dispersing mixtures (Duplat et al. 2010).
Precise predictions of the PDF shapes and rate of deformation are obtained in flows
where the encounter between interacting lamellae is made at random. The correspond-
ing flows, which empirically happen to be the rule rather than exceptions, may not be
strongly turbulent, but only require to be random as just defined. Indeed, the corre-
sponding approach has also been successful for very different classes of flows, including
turbulent flows (Duplat et al. 2010; Duplat & Villermaux 2008), chaotic flows (Meunier
& Villermaux 2010), microfluidic flows (Villermaux et al. 2008), and porous media flows
(Le Borgne et al. 2013). In this framework, the statistical properties and the degree of
smoothness of the underlying velocity fields is embedded into two main elements that are
sufficient for predicting concentration distributions: the distribution of stretching rates,
which governs the concentration decay of elementary lamella, and the spatial distribution
of lamella density, that controls their probability of encounter.

Many processes, however, depend on concentration gradients, or differences ∆c taken at
a given spatial increment ∆x, rather than on the concentration amplitudes c themselves.
This includes a wide range of chemical reactions, such as redox reactions, mixing-driven
precipitation, and rock dissolution (Dentz et al. 2011; Fu et al. 2015; Haudin et al.
2014; Le Borgne et al. 2014; de Anna et al. 2014b; Paster et al. 2015; Bolster 2014),
and biological processes in fluids, such as chemotaxis (Tel et al. 2005; Vergassola et al.
2007; Neufeld & Hernandez-Garcia 2009; Stocker 2012; Taylor & Stocker 2012). It is also,
since Kolmogorov, customary in the turbulence community to study spatial differences
of the field (velocity, temperature, concentration) rather than the field itself (Monin &
Yaglom 1975). A large body of experiments, notably in the context of turbulence (Antonia
et al. 1984; Vaienti et al. 1995; Warhaft 2000), has shown that the distribution of the
concentration increments depends in a non-trivial way on the separation distance: Its
shape does not deform self-similarly as ∆x varies, it presents a peak in ∆c = 0 and
heavy large excursion tails (for, say, |∆c| much larger than its typical root mean squared
value), that are all the more pronounced as ∆x→ 0.

This puzzling so-called intermittent behavior has received over the years great attention
(see e.g. Frisch (1995)) and, in the passive scalar context (see Falkovich et al. (2001)),
has prompted a wealth of original ideas (Oboukhov 1962; Kraichnan 1974; Pumir et al.
1991; Vaienti et al. 1994; Kraichnan 1994; Balkovsky & Fouxon 1999; Kalda & Morozenko
2008), all of them emphasizing the necessary coupling between the structure of the stirring
field (i.e. the velocity differences), and the resulting properties of the scalar field, its
gradients in particular, with almost no exception (see however Kalda (2000)).

We develop here a substantially different point of view. Our theory does not assume any
anomaly, nor any particular scaling structure of the stirring field. On the contrary, our
approach only requires randomness, that of the stirring fields in which the construction
of the scalar field is a process of random aggregation of stretched lamellae (Villermaux &
Duplat 2003). We thus envisage the question of the concentration increments as a decon-
struction process: Since every concentration level is the sum of a number of contributions
from elementary lamellae (see figure 1c), taking differences between two distant points
amounts to cancel-out those contributions which are common to the two assemblages,
if any. It will be seen that the spatial correlation in the scalar field can be inferred by
quantifying the common aggregation history of points separated by a given distance in
the field. A first application of this principle for quantifying concentration increments in
porous media flows was presented by Le Borgne et al. (2015), for the limiting cases of
very low and very large Peclet numbers. Here we generalize the increment PDF theory to
i) demonstrate its relevance for turbulent flows, ii) cover the full range of Peclet numbers
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for porous media, iii) show the emergence of intermittency under incomplete aggregation
processes. Hence, we derive explicit expressions for the PDF of concentration increments
for a variety of mixtures (turbulent plume, channel flow, porous medium) and lamellae
interaction regimes (complete, partial or no aggregation).

We first present the general theory for concentration increments under lamella stretch-
ing and aggregation. We then apply these concepts to three different flows, representative
of the range of spatial patterns that control scalar gradients in fluids. For all these cases,
we recall previous results obtained for the concentration PDFs, which are needed for de-
riving the concentration increment PDFs. In the second section, we apply the theory to
mixing of a plume in a turbulent jet, with minimal aggregation. In the third section, we
consider the case of fully developed aggregation in a confined turbulent mixture. In the
fourth section, we discuss the development of a partial aggregation regime, characterized
by strong intermittency, for the case of mixing in porous media. In the fifth section, we
derive analytical expressions for structure functions and discuss the conditions for inter-
mittency. The last concluding section considers in particular the case of heterogeneous
mixtures.

2. Increments under lamella stretching and aggregation

We review here the basic concepts for characterizing concentration increments, and
we present a general theoretical framework for predicting their PDFs based on the com-
position rules of scalar fields from stretched lamellae aggregation (figure 1). The key
question that we address is how to relate the concentration increment PDFs to the con-
centration PDFs. While the latter have been well studied in the framework of lamellar
mixing theories (Villermaux & Duplat 2003; Duplat & Villermaux 2008; Duplat et al.
2010; Le Borgne et al. 2013), concentration increment PDFs have been described in this
framework so far in the context of porous media flows, considering idealized cases of
very low or very high Peclet numbers (Le Borgne et al. 2015), and mixtures composed
of independent lamellae (Meunier & Villermaux 2010). Here we generalize the random
aggregation theory for concentration increments, showing its relevance for different types
of flows and Peclet numbers, and thus providing a link between incomplete aggregation
and intermittency.

2.1. Basic concepts

2.1.1. Concentration increment PDF

The spatial structure of scalar fields may be quantified from the PDF of concentration
increments p∆x(∆c), computed for a spatial increments ∆x = |∆x|, as

∆c(x, t,∆x) = c(x + ∆x, t)− c(x, t). (2.1)

The proper gradient PDF is recovered when ∆x tends to zero. The dependence of the
concentration increment PDFs on the spatial scale ∆x reflects the spatial structure of
concentration fields arising from the combined action of molecular diffusion and stretching
by the flow.

When a characteristic diffusive smoothing correlation scale η can be defined for the
scalar field (also called coarse graining scale, see e.g. Villermaux & Duplat 2006; Meunier
& Villermaux 2010), the concentration increments over spatial increments ∆x larger than
η, denoted by ∆c>, are the difference of independent (random) concentration values. In
this case, the PDF p∆x(∆c) of concentration increments is obtained from the convolution
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Figure 1. a) Three consecutive instants of times showing how a bundle of stretched sheets in
a confined channel are brought together and merge, losing their individuality on a support of
transverse thickness η. b) Close-up in the dispersing mixture showing how the scalar field resolves
into a set of essentially non-interacting, disjointed sheets with distributed concentrations (see
figure 2a, for details). c) Sketch of the elementary sheet overlapping mechanism constructing the
concentration field. The concentration field (black line) is made by the random superposition of
n sheets (colored lines). Hence, the concentration located at the red point receives contributions
from the red curves and the purple curves, while the concentration located at the blue point re-
ceives contributions from the blue curves and the purple curves. When considering the difference
in concentration between these two points, the contributions from the purple sheets statistically
cancel out and thus the concentration increment ∆c is determined by m independent sheets (in
red and blue), with m 6 n. d) In dispersing mixtures where sheets are isolated and merging is
anecdotal, concentration differences ∆c are given by the concentration field c itself.
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of the global concentration PDF as

p∆x>η(∆c) =

∫
dc′pc(c

′, t)pc(c
′ −∆c, t) (2.2)

where pc(c, t) is the concentration PDF, in general a function of the residence time t of
the mixture in the stirred medium. This expression relates the concentration increment
PDF to the concentration PDF, and it holds in absence of correlation. As discussed in
the following, for increments ∆x smaller than the scalar field correlation length η for
which the concentration levels are correlated, an additional information about the way
the concentration field has been constructed is needed.

2.2. Ensemble of non-Interacting Lamellae

We first recall basic results for a mixture composed of isolated lamellae evolving under
stretching and diffusion solely (figures 1b and 1d). As discussed in the next section, this
situation is relevant to dispersing mixtures in turbulent flows, where expansion of the
scalar field support prevents elementary lamellae to overlap, and aggregate (Duplat et al.
2010), and in porous media flows at large Peclet numbers (Le Borgne et al. 2015). At
the lamella scale, the scalar concentration is close to uniform along the stretching direc-
tion, and varies rapidly in the compressive direction. The transverse concentration profile
can be approximated by a Gaussian profile which is a solution to the one-dimensional
compression diffusion equation (Meunier & Villermaux 2010). The corresponding con-
centration PDF is parametrized by the local maximum concentration, which depends on
the lamella deformation history, driven by the Lagrangian velocity gradients experience
by the lamella. The overall PDF is a weighted average of this PDF over the lamellae
stretching histories, reflecting the velocity gradient statistics.

For this type of scalar field, the correlation scale η is equal to the characteristic lamella
width, equilibrating the rates of substrate compression, and diffusing broadening. It is
equal to the familiar Batchelor scale in exponentially stretched flows (Batchelor 1959;
Meunier & Villermaux 2010), or increases like

√
Dt when the mean stretching decays in

time (Duplat et al. 2010; Villermaux 2012b; Le Borgne et al. 2013). For distances larger
than the correlation scale η, that is ∆x > η, the increment PDF is given by (2.2) since
concentration levels are independent. For ∆x < η, Meunier & Villermaux (2010) have
shown that a linear interpolation of the local Gaussian concentration distributions pro-
vides a good approximation for the concentration increment distributions at the lamella
scale. Under this approximation the concentration increment ∆c< for ∆x < η is related
to ∆c> as

∆c< =
∆x

η
∆c>. (2.3)

This simple linear approximation of the concentration profile across a lamella allows
relating the PDF of concentration increments for lag distances ∆x < η to the PDF of
concentration increments for lag distances larger than the correlation scale η, which is
independent of ∆x. Hence, the PDF of concentration increments ∆c< can be written in
terms of the PDF of ∆c> as (Meunier & Villermaux 2010)

p∆x<η(∆c) =
η

∆x
p∆x>η

( η

∆x
∆c
)
. (2.4)

In the absence of overlap between lamellae, the derivation of concentration increments
is thus relatively simple since neighboring concentration levels are either deterministically
correlated (for ∆x < η) or uncorrelated (for ∆x > η). The concentration increment
PDFs is thus directly related to the concentration PDF, as described above, and hence
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to the velocity gradient statistics. Interactions between lamellae induce less trivial spatial
correlations in the scalar field, which are the main focus of this study.

2.3. Concentration increments under random aggregation processes

We now consider the regime where the lamellae are close-by, and interact by merging
through diffusive coalescence (figure 1a). This encompasses a large class of scalar fields
in different types of flows, in which spatial correlations exist over a range of scales.
Diffusive overlap between elementary lamellae occurs in bundles (Villermaux & Duplat
2006) of transverse size η typically much larger than the Batchelor scale. Owing to the
linearity of the diffusion equation, the concentration c(x, t) at a point x results from the
random superposition of concentration levels of n elementary lamellae, each of them with
concentration θi, located within the characteristic radius η around x,

c(x, t) =

n(t)∑
i=1

θi(x, t). (2.5)

As discussed in Duplat & Villermaux (2008), this mechanism leads to an evolution equa-
tion for the concentration PDF that derives from generalized self-convolution processes.
The solution of this equation is a family of Gamma distributions, which are parametrized
by the mean number of simultaneous lamella aggregation n. The latter is such that it
restores the mean concentration in the mixture as 〈c〉 = n(t)θ(t), where θ(t) is the mean
lamella concentration (see equation (4.2) in section 4).

To quantify concentration increments for an ensemble of aggregating lamellae, we con-
sider two locations x and x + ∆x separated by a distance ∆x < η. There, the concentra-
tions are c(x, t) and c(x + ∆x, t), respectively. In the aggregation regime, both of them
result from the addition of n independent concentration levels θi so that we can write,
following (2.5)

∆c(x, t|∆x) =

n∑
i=1

θi(x + ∆x)−
n∑
i=1

θi(x), (2.6)

the two sums representing contributions from elementary lamellae in a neighborhood of
size η both at x, and x+∆x. Thus, when ∆x < η, the two neighborhoods intersect, with
n −m lamellae in the common overlapping region, and m independent lamellae in the
rest (see figure 1c). Upon subtraction of the concentration levels at x and x + ∆x, the
contributions due to the n−m lamellae that contribute to both concentration levels are
canceled out. We then have

∆c(x, t|∆x) =

n−m+m∑
i=1

θi(x + ∆x)−
n−m+m∑
i=1

θi(x) (2.7)

=

m∑
i=1

θi(x + ∆x)−
m∑
i=1

θi(x) (2.8)

= c′(x + ∆x, t)− c′(x, t), (2.9)

where c′(x + ∆x, t) and c′(x, t) are two independent concentrations obtained by random
addition of m < n independent lamellae in the respective disjointed neighborhoods.

The concentration levels c′(x, t) and c′(x+∆x, t) are statistically independent because
they are composed of independent lamellae. Due to this renormalization, the concentra-
tion increment c(x, t)− c(x−∆x, t) is composed now of the difference of m independent
concentration levels. Thus, the PDF of concentration increments ∆c(x, t) can be readily
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determined from equation (2.2) by the convolution of the concentration PDFs corre-
sponding to the aggregation of m lamellae,

p∆x<η(∆c) =

∫
dc′pc(c

′, t|m)pc(|∆c| − c′, t|m). (2.10)

where pc(c
′, t|m) is the concentration PDF corresponding to an aggregation of m inde-

pendent lamellae.

The number of independent lamellae m participating to the construction of two neigh-
boring concentration levels, increases with their separation distance ∆x. Since the non-
overlap area increases linearly with ∆x, the number of independent lamella evolves as
the density of lamella in a domain of characteristic size ∆x. The latter can be measured
by the density of purely advected material lines in a domain of size ∆x, which may be
characterized its fractal dimension df , as (e.g. Le Borgne et al. 2015),

m(∆x) ∼ n
(

∆x

η

)df−d+1

(2.11)

The term d − 1 accounts for the dimensionality of the elementary coalescing objects,
namely lamellae in two dimensions (d = 2) and sheets in three dimensions (d = 3). Note
that df is the fractal dimension of the purely advective material lines and not of the
scalar field itself. Hence, it does not depend on the diffusive aggregation process but only
on the stretching and folding dynamics. For turbulent mixtures in confined domains,
material lines or surfaces are generally space filling and df = d (Duplat & Villermaux
2008). For heterogeneous porous media flows, this is not the case (see figure 7) and a
stable fractal dimension df < d has been shown to result from the balance between the
elongation rate of material lines that tends to fill the domain and the dispersion rate
that tends to expand the domain and create new lacunarities (Le Borgne et al. 2015).

Equation (2.11) for m(∆x) assumes a sharp transition from correlated concentrations
for ∆x < η to uncorrelated concentrations for ∆x > η. In flow fields, this transition may
be smooth in general. A more precise expression is derived in Appendix A by considering
the probability of overlap of the lamellae aggregates participating to the construction of
the concentration of two points at positions separated by a distance ∆x. The number of
independent lamellae m is

m(∆x) = n erf

(
∆x

η

)df−d+1

(2.12)

Expression (2.12) is equivalent to equation (2.11) for ∆x � η and converges smoothly
to n for ∆x� η.

Equation (5.8) illustrates how computing increments of concentration in a field made of
elementary aggregations deconstructs the direct aggregation process. One probes all the
more deep, or early, in the process that small scale increments are considered since, owing
to equation (2.11), the number of independent lamellae vanishes with the separation (i.e.
when the two neighborhoods are identical, see figure 1c). When m → 1, pc(c, t|1) is
a measure of the ‘quantum’ (Villermaux 2012a), or elementary brick, constructing the
concentration field pc(c, t). In the following we discuss the application of these concepts
to different classes of flows, including turbulent and porous media flows, under confined
and open conditions.
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3. Minimum Self-Aggregation in Turbulent jets

We first analyze concentration increments in dispersive mixtures undergoing minimal
self-aggregation. Turbulent jets where scalar plumes are let free to disperse as they mix
fulfill this property since the average distance between sheets increases due to large
scale plume dispersion (Duplat et al. 2010). In this section, we analyze concentration
increments in a turbulent jet experiment. These data were previously analyzed by Duplat
et al. (2010) for studying the evolution of concentration PDFs. Thus we recall previous
findings regarding concentration PDFs and present new results concerning concentration
increment PDFs.

Figure 2a latter shows a snapshot of an experiment where a plume of scalar (Disodium
Fluorescein in water, a weakly diffusing dye with Schmidt number Sc of the order of
2 × 103) is released in a large scale, sustained turbulent medium in the far field of a
turbulent jet. The plume is injected continuously in the far field and on the axis of a
turbulent jet via a tube whose diameter d is smaller than the local integral scale L, with
d = 4 mm and L = 8 cm. At the injection location the Reynolds jet number Re is of
order 104. The smallest scale resolved in this experiment is 66 µm. The concentration
PDFs measured at different distances from the source are shown in figure 3.

3.1. Scalar field correlation length under stretching and diffusion

The characteristic correlation length of the scalar field η is equal here to the average
sheet width s. Scalar sheets are elongated, in the mean, in two directions with an average
elongation ρ such that

ρ = 1 + σet, (3.1)

where σe is the mean elongation rate, given by the velocity difference in the flow at the
source scale, σe ∼ u/d, where u is the mean velocity at the source (Duplat et al. 2010).

As a result, the sheets are compressed at a rate γc = −
〈

1
ρ2
dρ2

dt

〉
given by

γc = − 2σe
1 + σet

(3.2)

The sheet width (initially equal to s0) evolves through the competition between diffusive
broadening and compression in the direction perpendicular to the local elongation, as

1

s

ds

dt
=
D

s2
+ γc (3.3)

The mixing time ts, corresponding to the time when diffusive broadening D/s2 equili-
brates substrate compression γc occurs for a dissipation scale s(ts) such that (Duplat
et al. 2010),

ts ∼
1

σe

(
σes

2
0

D

)1/5

, and s(ts) ∼ s0

(
σes

2
0

D

)−2/5

. (3.4)

The temporal behavior of the sheet width is, for t < ts,

s(t) ∼ s0

(1 + σet)
2 (3.5)

and, for t > ts,

s(t) ∼
√
Dt (3.6)

Since stretching rates, and therefore mixing times, are distributed, so are sheet widths
(figure 2a). While strongly stretched sheets reach the mixing scale quickly, those that are
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stretched at slower rate remain in the first regime for a long time. The mean correlation
length is equal to the mean sheet width,

η(t) = 〈s(t)〉 . (3.7)

For the experiments discussed in this section, the mixing time is reached at a downstream
distance of about x = 2d (see inset of figure 3a). The mixing scale at this distance is
about s(ts) ≈ 4 µm, and then increases by diffusion reaching about 7 µm at a distance
of x = 20 d.

3.2. Concentration PDFs

Following the approach of Ranz (1979), the concentration distribution across a stretched
lamella can be estimated by assuming that concentration gradients are negligible in the
direction of the lamella elongation such that diffusion acts effectively in the direction
perpendicular to the lamella elongation. In this direction, the concentration field is sub-
ject to a compression rate γc, which compensates the elongation in the other direction
for incompressible fluids. Hence, in the Lagrangian frame attached to the lamella, the
concentration of a stretched scalar sheet c(ζ, t) at a position ζ along the direction per-
pendicular to the sheet is

∂c

∂t
= −γcζ

∂c

∂ζ
+D

∂2c

∂ζ2
. (3.8)

where the first term on the right hand side quantifies compression in the direction per-
pendicular to the direction of elongation and D is the diffusion coefficient. This approach
has been shown to describe accurately the evolution of concentration fields under dif-
ferent stretching dynamics, ranging from algebraic to exponential (Duplat et al. 2010;
Meunier & Villermaux 2010).

To solve this equation, we approximate the initial concentration across the sheet by a
top-hat profile of width 2s0, that is c(ζ, t = 0) = c0H(s0 − |ζ|) with H(ζ) the Heaviside
step function. Thus, we have at later times (Ranz 1979; Duplat et al. 2010; Meunier &
Villermaux 2010)

c(ζ, t) =
c0
2

[
erf

(
s0 − ζ
s0

√
4τ

)
+ erf

(
s0 + ζ

s0

√
4τ

)]
(3.9)

where

τ = D

t∫
0

dt′

s(t′)2
. (3.10)

Thus, we obtain for the maximum concentration within the sheet

cm = c0erf

(
1√
4τ

)
, (3.11)

For a linear elongation process in two directions leading to a compression rate decaying
in time according to equation (3.2), expression (3.11) may be approximated by

cm ≈ c0/2
(
1− exp

[
− (ts/t)

ν
/
√
π
])
, (3.12)

with ν = 5/2. The sheet concentration goes towards c0 for t� ts and c→ c0(t/ts)
−ν/
√
π

when t � ts. The mixing time ts is distributed around a mean value 〈ts〉. For a plume
released in a turbulent jet, it has been found that the elongation rates are distributed
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amongst the sheets, but that each of them remains constant in time. Mixing times are
exponentially distributed (Duplat et al. 2010)

pm(ts) = exp(−ts/〈ts〉)/〈ts〉 (3.13)

with 〈ts〉 the average mixing time set equal to (3.4). The concentration content of the
mixture can be well described by the distribution of maximum concentrations across
sheets. Thus the global concentration PDF is obtained from the map (3.12) from the
PDF (3.13) of mixing times

pc(c, t̃) =
t̃ [− log(1− 2c/c0)]

1
ν−1

exp
(
−t̃[− log(1− 2c/c0)]

1
ν

)
(1− 2c/c0)ν

(3.14)

valid for 0 < c < c0, and zero else; we define t̃

t̃ =
t

〈ts〉
π

1
2ν =

x

u 〈ts〉
π

1
2ν . (3.15)

This expression quantifies the impact of stretching statistics, reflecting velocity statis-
tics in the turbulent jet, on the distribution of concentrations. The resulting analytical
predictions compare well with the experimental data (figure 3a), providing an accurate
estimate of the full PDF of concentrations at any position downstream of the dye in-
jection location. As shown in the inset of figure 3a, these predictions are obtained with
a unique parameter t̃, which increases linearly with the distance from the injection as
expected from equation (3.15).

After the mixing time, the average sheet concentration decays as

〈c〉 ∝ (t/〈ts〉)−5/2
, (3.16)

a scaling which can be understood as resulting from the distribution of the sheet mass
over a volume that increases linearly in two elongation directions in the sheet plane and
diffusively in the direction normal to the sheet plane.

3.3. Concentration increment PDFs

We now examine the shape and evolution of concentration increment PDFs, which have
not been analyzed by Duplat et al. (2010). Since the jet is freely dispersing, sheets are
distant from each other and undergo minimum aggregation. Note that some isolated
diffusive coalescence events do occur as illustrated in figure 2a. However, these events
are not affecting significantly the concentration statistics, which are well predicted by a
equation (3.14), which assumes that sheets are independent. Hence, for spatial increments
∆x larger than the correlation scale η (3.7), the PDF of concentration increments is
obtained by inserting the analytical expression derived for the concentration PDF (3.14)
into the self-convolution equation (2.2). This convolution can be written as

p∆(∆c) =

∞∫
0

dzt̃ exp(−zt̃)pc (c0[1− exp(−zν)] + |∆c|) , (3.17)

Using the sharp decay of the exponential for z > 1/t̃, we may approximate t̃ exp(−zt̃) ≈
δ(z)/2 such that

p∆(∆c) ≈ 1

2
pc(|∆c|). (3.18)
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As shown by this approximation, the PDF of concentration increments are very close to
the PDF of concentrations themselves. This is expected since the PDF of concentrations is
sharply peaked around zero (figure 3b), which implies that most concentration increments
result from the difference of a given concentration value c1 close to a sheet center to a
small concentration pertaining to diffusive profiles far from the sheet center c2 � c1,
such that ∆c = c1 − c2 ≈ c1: convolution with a Dirac delta at the origin preserves the
original distribution (see figure 1d).

As for the concentration PDFs, the concentration increment PDFs reflect the dis-
tribution of stretching rates resulting from velocity statistics in the turbulent jet. The
predictions obtained from equation (3.18) compare well with experimental measurements,
providing accurate estimate of concentration increment PDFs at different downstream
locations from the source. These predictions are made with no fitting parameters since
ν = 5/2 and t̃ is set from the concentration PDF analysis (see inset of figure 3a) in
agreement with equation (3.15). We consider here spatial increments larger than the cor-
relation scale ∆x > η, since the average mixing scale η is very small in the considered
experiment (about 5 to 7 µm from equation (3.4)).

Note that a similar result was obtained by Le Borgne et al. (2015) for low Reynolds
number porous media flows at high Peclet numbers, whose velocity distribution strongly
differs from that of turbulent flows. Although the equation describing concentration in-
crements in this context is different from equation (3.17), because the stretching rate
distribution is fundamentally different, the basic argument for deriving concentration
increments is similar. This suggests a broad generality of the proposed concentration
increment theory for a range of velocity fields. In the following, we explore concentration
increment PDFs in turbulent mixtures undergoing significant self-aggregation.

4. Fully Developed Aggregation in Confined Turbulent jets

The dispersing mixtures studied in the previous section represents a case of minimum
aggregation; we now consider the opposite scenario of fully developed aggregation. For
this we analyze the experimental dataset of Duplat & Villermaux (2008), which is similar
to that described above except that a duct is included for confining the turbulent jet. The
confinement thus maximizes the sheet aggregation process. Duplat & Villermaux (2008)
showed that concentration PDFs are correctly described by a self-convolution process,
which we recall briefly here for completeness. We then analyze the shape and evolution
of concentration increment PDFs within the theoretical framework presented in section
2.3.

Figure 2b shows how the dye rapidly invades the whole cross-section of the duct, and
how its concentration differences are progressively erased while traveling downstream to
relax towards a more or less uniform mixture. As for the freely dispersing jet, the flow
disorder creates scalar sheets elongating in time and occupy more and more space in
the duct. The confinement favors scalar sheets coalescence and gives rise to new sheets
whose concentration profile is the addition of the original ones (figure 4). The average
concentration of the mixture 〈c〉 is conserved.

4.1. Concentration PDF

Assuming that the aggregating sheets have independent stretching histories, diffusive coa-
lescence can be described as a random aggregation process (Villermaux & Duplat 2003).
This can be formalized by a general equation for the concentration PDF that quanti-
fies its evolution through self-convolution and stretching enhanced diffusion (Duplat &



12 Le Borgne, Huck, Dentz and Villermaux

a) b)

Figure 2. a) A planar cut through a dispersing plume made by the injection of a dye (Disodium
Fluorescein in water) through a small tube of d = 4 mm in diameter on the axis of a larger
turbulent jet whose integral scale is L = 8 cm at the injection location. Scalar sheets dilute by
evolving on their own. b) Same as in a), with the plume confined in a square duct of lateral
width L = 3 cm. The mixture relaxes, through aggregation of sheets, towards a non-zero average
concentration in that case. The Reynolds number of the flow is Re = 104.
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Figure 3. a) Concentration PDFs measured at different distances from the source, x/d = 10.7
(blue full line), and x/d = 21.4 (purple full line), for a freely dispersing mixture as in Duplat
et al. (2010). The dashed lines show the predictions of equation (3.14), with t̃ as a unique
parameter. The inset shows the fitted values of t̃, which increase linearly as a function of the
distance from the injection as expected from equation (3.15). b) Concentration increment PDFs
measured at the same downstream distances for a spatial increment ∆x = 50η. The estimation
of the increment PDF from the convolution of independent concentration levels (2.2), is shown
as dashed lines.

Figure 4. Mixing of a dye discharging from a jet of diameter d = 8 mm in a square (L × L
with L = 3 cm) duct. The figure shows successive instantaneous planar cuts of the scalar field
at increasing downstream locations in the duct, showing the progressive uniformization of the
dye concentration levels, from Duplat & Villermaux (2008).

Villermaux 2008). The solution of this equation is a family of Gamma distributions:

pc(c/ 〈c〉 , t) =
nn

Γ(n)

(
c

〈c〉

)n−1

exp

(
−n c

〈c〉

)
(4.1)

where n is the average number of aggregations, which is such that it restores, by addition,
the average mixture concentration 〈c(x, t)〉

〈c(x, t)〉 = n(t)θ(t) (4.2)

where θ(t) is the average concentration of an elementary sheet at time t, which results
from the stretching enhanced diffusive regime described previously (equation (3.16)).
Since the average concentration is constant in this experiment, and since θ ∼ t−ν , the
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Figure 5. Comparison of measured and predicted concentration distributions and concentration
increment distributions for the confined turbulent mixture. a) Concentration PDFs measured
at different distances (4L, 5L, 6L) from the source (full lines) and predicted from Gamma
distributions of order n = {20, 35, 95} (dashed lines), b) Concentration increment PDFs at
x = 4L measured for different spatial increments ∆x = {0.2η, 0.7η, 2.5η, 3.5η} (full lines) and
predicted by equation (4.5) (dashed lines).

expected scaling of the average coalescence number is (Duplat & Villermaux 2008)

n(t) ∼
(

t

〈ts〉

)ν
, (4.3)

with ν = 5/2. As shown by Duplat & Villermaux (2008), and illustrated in figure 5b,
concentration distributions in this regime are well described by the predictions of equa-
tion (4.1), thus confirming the validity of the random aggregation model. These Gamma
distributions are defined by a single parameter n(t), which increases in time according
to equation (4.3). Therefore, in this regime, the statistics of concentrations are not de-
termined anymore by the distribution of stretching rates, as described in the previous
section, but by the frequency of lamella aggregation, quantified by n(t).

4.2. Coarse graining scale

The aggregation process results in the creation of sheet bundles of characteristic size
η = ns, where s is the average sheet width, which evolves through stretching and diffusion
(equation (3.3)). The correlation scale η, also called the coarse graining scale (Villermaux
& Duplat 2006), is thus much larger than the characteristic sheet scale s. From the
temporal evolution of n(t) in (4.3) and of s(t) in (3.6), the coarse graining scale is expected
to scale as

η(t) ∼
√
D 〈ts〉

(
t

〈ts〉

)ν+1/2

. (4.4)

In a confined domain, this rapid growth is similar to a percolation process (Villermaux
2012a; Le Borgne et al. 2015) and at the percolation threshold, the correlation length is
a fraction of the domain size. For the confined jet experiment, η varies from η = 0.9 mm
at a distance from the duct inlet x = 4L, to η = 2.7 mm at x = 6L.
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4.3. Concentration increment PDFs

Based on the earlier results for concentration PDFs recalled above and the general frame-
work presented in section 2.3, we now analyze the shape and evolution of concentration
increment PDFs. Under random aggregation, concentration fields develop complex spatial
correlation patterns, which are induced by multiple interactions between sheets (figure
1a). As demonstrated in section 2.3, differences in neighboring concentration levels are
expected to depend only on the sheets that have aggregated independently at the two
locations, while the contribution of common aggregated sheets is eliminated by the differ-
ence operator (figure 1c). This principle leads to a close form expression for the concen-
tration increment PDF (5.8). Inserting (4.1) into this equation, we obtain the following
expression for the concentration increment PDF for the confined turbulent jet, where
Kp(·) denotes the modified Bessel function of the second kind of order p (Abramowitz &
Stegun 1964)

p∆x<η(∆c) =
1√

πθ2m(∆x)Γ(m(∆x))

(
|∆c|θ

2

)m(∆x)−1/2

Km(∆x)− 1
2

(
|∆c|
θ

)
, (4.5)

This expression depends on two parameters: the mean sheet concentration θ(t), given
by equation (3.12), and the number of independent sheets m(∆x), given by equation
(2.12). For ∆x > η, the increment PDF is expected to be invariant with ∆x since all
possible concentration differences have been sampled (see figure 5b). This property is
expressed by the convergence of m(∆x) to n(t) (equation (2.12) and figure 6). Note
that the shape of the concentration increment PDFs differs from those observed for the
dispersing mixture, which are sharply peaked around zero (figure 3b). The latter is mostly
related to the existence of diffusive tails around sheets that lead to large probabilities
for low concentration levels. The absence of a sharp peak around zero in the confined
mixture (figure 5b) is thus a manifestation of the fully developed aggregation process that
fills the diffusive profiles in-between the sheets. As discussed in the next section, this is
not the case for partial aggregation regimes where material lines are non space-filling.

The predictions of equation (4.5) are in good agreement with the measured concentra-
tion increment PDFs measured for different spatial increments ∆x (figure 5b). Since the
temporal evolution of the mean sheet concentration θ(t) is known from the analysis of
the freely dispersing jet in the previous sections (equation (3.12)), these predictions are
obtained with a single parameter m(∆x). The evolution of the number of independent
m(∆x) with the spatial increment is consistent with the prediction of equation (2.12)
(figure 6). For small spatial increments ∆x, the number of independent sheets participat-
ing to concentration levels at neighboring locations tends to zero, while at large spatial
increments it tends to n and becomes independent of ∆x. Hence, spanning through the
spatial increments is equivalent to deconstructing the different stages of aggregation from
the elementary sheet stage for m→ 0 to the fully developed aggregation stage for m→ n.
The key parameter quantifying the spatial structure of mixtures is m(∆x) measuring the
density of material lines as a function of scale, which dictates the progress of aggrega-
tion as the diffusion scale increases (equation (2.12)). Consistently, its cross-over towards
saturation at m = n occurs for ∆x of the order of η.

Note that expression (4.5) is similar to the result previously obtained for concentration
increments in porous media flows at low Peclet numbers (Le Borgne et al. 2015). While
concentration increment PDFs in these two flow systems obey the same general law,
despite having markedly distinct velocity distributions, they differ in the temporal scaling
of the mean sheet concentration θ(t) and the spatial scaling of the density of independent
sheets m(∆x), which are the two parameters determining how the shape of concentration
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Figure 6. Number of independent sheets m participating in concentration increments as a
function of the spatial increment ∆x for the confined mixture at a distance x = 4L. This
number is obtained by fitting equation (4.5) to the concentration increment PDFs of figure 5b.
Inset: same in loglog plot. The dashed line represents the prediction of equation (2.12).

increment PDFs evolve with time and spatial increment. These two parameters thus
quantify the impact of the velocity distribution on the increment PDFs. The temporal
decay of the mean sheet concentration θ(t) depends on the stretching dynamics: θ ∼ t−5/2

for the considered turbulent jet and θ ∼ t−α, with 1 < α < 5/2, for 2D porous media. On
the other hand, the increase of the number of independent sheets with spatial increment
m(∆x) is controlled by the fractal dimension of purely advected material lines (equation
(2.11)). The latter depends on the relative importance of stretching and dispersion. While
stretching tends to fill space with material lines, dispersion increases the global area that
they occupy. In the case of confined turbulent jet, the presence of the duct prevents
lateral spreading. The stretched sheets hence become rapidly space filling (see figures 3b
and 4). In porous media however, persistent flow heterogeneities prevent material lines
to fill the domain (see red lines in figure 7). In other words, the stretching dynamics are
not fast enough to fill the domain created by dispersion. For 2D porous media, this has
been shown to lead to a stable fractal dimension, 1 < df < 2 (Le Borgne et al. 2015).
This has important consequences for the development of intermittency, as discussed in
the following section.

5. Partial Aggregation and Intermittency

Previous sections discuss two scenarios of minimum and maximum aggregation. In gen-
eral, heterogeneous flows lay in-between these extreme situations. In particular, dense
lamella aggregates have been shown to coexist with concentration lacunarities in flow
fields characterized by a broad distribution of velocities that produce non space-filling
material lines (Le Borgne et al. 2013). Porous media flows pertain to this category as
strong spatial fluctuations in permeability produce complex mixing patterns, which con-
trol chemical reactions in a range of applications, including CO2 sequestration, soil reme-
diation, geothermal systems and enhanced oil recovery (Battiato et al. 2009; Dentz et al.
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2011; Bijeljic et al. 2011; Chiogna et al. 2012; Engdahl et al. 2014; Hidalgo et al. 2015;
Jimenez-Martinez et al. 2016). As discussed in the previous section, for the cases of very
large and very low Peclet numbers, concentration increment PDFs may be described in
the same general theory with respectively limited lamella interaction or fully developed
aggregation (Le Borgne et al. 2015). Yet, the applications mentioned above lead to a
broad range of Peclet numbers, for which these extreme scenarios do not apply. Here
we investigate shape and temporal evolution of concentration increments in the case of
intermediate Peclet number, which may be relevant for a class of applications.

Figure 7 shows a snapshot of a stretched material line, and of the associated concen-
tration field, in a two dimensional incompressible flow through a heterogeneous porous
media (Le Borgne et al. 2015). The conductivity K(x) is represented as a lognormally
distributed random field, such as f(x) = lnK(x) is normally distributed with mean
f = 1, variance σ2

f = 1 and correlation length λ. This type of random conductivity is
generic and represents a reference field for theories of flow and transport in heterogeneous
porous media. Spatial variability in conductivity K(x) leads to spatial fluctuations in the
divergence-free flow field u(x) via the Darcy equation u(x) = −K(x)∇h(x), with h(x)
the hydraulic head. Flow is driven by a mean pressure gradient from left to right. It is
confined by impermeable horizontal boundaries at the bottom and the top. The initial
condition is given by an instantaneous uniform line injection at x1 = λ. The characteris-
tic advection time scale is defined by τa = λ/u, where u is the mean transport velocity.
The characteristic diffusion time is τD = λ2/D. The Péclet number

Pe =
λu

D
(5.1)

compares the diffusive and advective time scales.
As illustrated in figure 7, Darcy flows generate a heterogeneous spatial distribution of

lamella density (purely advected red lines) with areas focusing a large number of lamellae
next to empty regions. This spatial structure can be quantified by the material line fractal
dimension. For the considered flow field df = 1.6 has been shown to be stationary in time.
This stable fractal dimension results from power law scaling behaviors of the dispersion
length and the line elongation, which are both linked to the existence of broad velocity
distributions (Le Borgne et al. 2013). Figure 7a shows the initiation of aggregation at
Peclet Pe = 800 where the shape of lamellae that develop around the material lines are
still distinguished. As more an more lamellae merge, concentration fields can be viewed
as an ensemble of lamellae bundles separated by concentration lacunarities (figure 7b).
Although the shape of lamellae are no longer apparent in the concentration field, the
number of underlying lamellae in each bundles can be visualized from the superimposed
purely advected material lines in red obtained from the numerical simulation. While
stretched lamellae are not directly visible in the concentration field, their continuous
aggregation still controls the concentration statistics. In particular, large concentrations
are found in area of dense lamella aggregation.

5.1. Concentration PDF

Before analyzing concentration increments, we recall previous results obtained for con-
centration PDFs for the regime of partial aggregation (Le Borgne et al. 2015). In this
regime, the statistics of concentrations have been shown to be well described by ap-
proximating the concentration profiles c′(x, t) around aggregates as Gaussian spatial
profiles whose maximum concentration evolves through a random aggregation process.
The statistics of local concentration maxima are thus expected to follow Gamma distri-
butions, as described in the previous section (equation (4.1)). The concentration profiles
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Figure 7. Snapshot of concentration field simulated in a heterogeneous porous medium, with
permeability field variance σ2

lnK = 1 and Peclet number a) Pe = 800 and b) Pe = 80. The
color scale is the same as in figure 2. The concentration field is normalized by its maximum
value. The superposition of a purely advected line (in red) illustrates the construction of the
scalar mixture from an ensemble of lamellae experiencing distributed stretching rates in (a) and
random aggregation in (b).

around each maximum, which develop towards the concentration lacunarities, introduce
an additional variability in concentrations that can be quantified by the concentration
PDF of a Gaussian function conditional to its maximum (Le Borgne et al. 2015),

pc(c|cmax) =
1

2c
√

ln(cmax/ε) ln(cmax/c)
, (5.2)

where ε is the minimum concentration that is required for normalization. This condi-
tional PDF quantifies in particular the large probability associated with low concentra-
tion values, with a typical scaling pc(c) ∼ 1/c when c → 0. This scaling, associated
with diffusion profiles, is not found in the fully developed aggregation scenario previ-
ously described, since aggregation prevents these profiles to develop. On the other hand,
the presence of concentration lacunarities allows the existence of diffusive tails around
lamellae aggregates. With the Gamma distribution for local concentration maxima, the



Scalar Gradients in Stirred Mixtures 19

global concentration PDF pc(c) is thus (Le Borgne et al. 2015),

pc(c|n) =

∞∫
c

dx
xn−1

Γ(n)θn
exp(−x/θ)

2c
√

ln(x/ε) ln(x/c)
. (5.3)

where, as for equation (4.1), n is the average number of aggregation and θ is the mean
lamella concentration.

From the analysis of the stretching statistics in the considered porous media, the
elongation distribution was found to be well modeled by a multiplicative process lead-
ing to lognormal elongation distribution of average 〈log ρ〉 ∼ µ1 log(t/τa) and variance
σ2

log ρ ∼ 2µ2 log(t/τa). This leads to a power law increase of the mean elongation as

〈ρ〉 ∼ tµ1+µ2 and accordingly to a power law decay of the mean lamella concentration
such as,

θ(t) = c0(t/τa)−µ1+µ2−1/2 (5.4)

For the case studied here (σ2
logK = 1, figure 7), the elongation distribution exponents are

µ1 = 0.7 and µ2 = 0.2 (Le Borgne et al. 2015). Once θ is determined from the elongation
dynamics, the only parameter for the concentration PDFs is the total number of lamella
aggregation n. The latter may estimated by quantifying the average number of lamellae
in a radius of diffusion (Le Borgne et al. 2015),

n(t) ∼
(√

Dt
)df−d+1

(5.5)

where for the considered 2D porous media the fractal dimension is stable in time and
equal to df = 1.6.

For c/(nθ) < 1, equation (5.3) can be approximated by (see Appendix B)

pc(c|n) ≈
√

2π(n− 1) exp[(n− 1) ln[(n− 1)]− (n− 1)]

2Γ(n)c
√

ln[(n− 1)θ/ε] ln[(n− 1)θ/c]
(5.6)

while for c/(nθ) > 1, it may be approximated by

pc(c|n) ≈ cn−1

2θnΓ(n)

exp(−c/θ)√
ln(c/ε)

√
π/(n− 1)√

c/((n− 1)θ)− 1
. (5.7)

The predictions provided by equation (5.3), where n is the only free parameter once
θ is determined from the analysis of stretching distribution (equation (5.4)), are shown
in figure 8a. As discussed in Le Borgne et al. (2015), these predictions are in good
agreements with the simulations when n increases with time according to equation (5.5).
The behavior of the concentration PDF for large concentrations is close to a Gamma
distribution as in the full aggregation regime (equation (4.1)) since large concentrations
coincide with the maximum concentrations of lamella aggregates, which follow a Gamma
distribution. This differs from the minimum aggregation regime (see inset of figure 8a).
The behavior at small concentrations follows a 1/c scaling characteristic of the diffusive
profiles developing in the concentration lacunarities as for the minimum aggregation
scenario (figure 8a). This introduces a peak of probability at low concentration which
has an important impact on the concentration increment PDF and on the scaling of the
associated structure functions, as discussed in the following.

5.2. Concentration increment PDFs

We now derive the concentration increment PDFs for the partial aggregation regime. In
this regime, the mixture is composed of lamella bundles, which have developed through
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Figure 8. Comparison of analytical predictions of concentration distributions and concentra-
tion increment distributions to simulations for a Darcy field with σ2

lnK = 1 and Peclet Pe = 80
(see figure 7b). a) PDF of concentrations pc(c) a times t = 37.5τa, 62.5τa, 87.5τa and 112.5τa
from simulations (full lines) and analytical predictions (dashed lines, equation (5.3)). Inset: con-
centration PDF at time t = 37.5τa compared to the prediction of a lamella mixing model (grey
dash-dotted line) that neglects aggregation as in section 3. b) PDF of concentration increments
p∆x(∆c) at time t = 112.5τa for ∆x = λ/8,λ/2, 2λ, 8λ, from simulations (full lines) and an-
alytical predictions (dashed lines, equation (5.9)). Inset: comparison of p∆x(∆c) (black dashed
line, equation (5.8)) and 1/2pc(|∆c|) (full grey line, equation (5.9)) for the case corresponding
to t = 112.5τa and ∆x = 8λ.

diffusive aggregation, separated by concentration lacunarities. Applying the principle
presented in section 2.3, concentration gradients within lamella bundles are expected to
be directly related to the fraction of independent lamellae participating to the value of
concentration at neighboring locations by random aggregation. The number of indepen-
dent lamellae m(∆x) grows with the separation distance following equation (2.12). Since
material lines are non space filling, df = 1.6, the growth of m with ∆x is slower than in
the fully developed aggregation case. The concentration increment PDF is thus obtained
as,

p∆x<η(∆c) =

∫
dc′pc(c

′, t|m)pc(|∆c| − c′, t|m). (5.8)

where pc(c
′, t|m) is the concentration PDF corresponding to an aggregation of m inde-

pendent lamellae given in equation (5.3).
Since the concentration PDFs are sharply peaked around zero (equation (5.6)), a sig-

nificant part of the large concentration increments are obtained by the subtraction of a
concentration within a lamella bundle c1 to a small concentration pertaining to diffusive
profiles in lacunarities c2 � c1, such that ∆c = c1 − c2 ≈ c1. This implies, as in section
3.3, that the concentration increment PDFs are expected to be close to the concentration
PDFs themselves: p∆x(∆c) ≈ 1/2pc(|∆c|) (see inset of figure 8b),

p∆x<η(∆c) = 1/2

∞∫
|∆c|

dx
xn−1

Γ(m(∆x))θm(∆x)

exp(−x/θ)
2|∆c|

√
ln(x/ε) ln(x/|∆c|)

(5.9)



Scalar Gradients in Stirred Mixtures 21

which can be approximated by expressions (5.6) and (5.7). This expression is determined
by two parameters: θ and m. The mean lamella concentration θ, which is determined by
the stretching dynamics coupled to diffusion, is given by equation (5.4). The number of
independent lamella m is set by the evolution of lamella density with scale according to
equation (2.12).

The predictions obtained from equation (5.9) are in good agreement with the simu-
lations (figure 8b), with the parameter m evolving according to equation (2.12). The
shape of the increment PDFs depends on the spatial increment ∆x, which implies that
the increment PDFs cannot be collapsed by rescaling. This property is a characteristic
of intermittent processes (e.g. Antonia et al. 1984; Warhaft 2000; Falkovich et al. 2001).
Intermittency is linked here to the coexistence of densely aggregated lamellae and concen-
tration lacunarities. For small spatial increments ∆x, the concentration increment PDFs
are sharply peaked around zero and decays nearly exponentially for large increments.
While the peak around zero corresponds to concentration lacunarities, the exponential
decay is the signature of a small aggregation number m. Since neighboring concentration
levels have a large number of contributing elementary lamellae in common, their differ-
ence is made from a small number of independent lamellae m. On the other hand, for
large spatial increments ∆x, the concentration increment PDFs are still sharply peaked
around zero, owing to concentration lacunarities, but the decay at large concentration in-
crements is no longer exponential. The latter converges to a gamma distribution of order
m→ n as ∆x→ η, as predicted from our framework. Hence the shapes of the increment
PDFs for different spatial increments reveal the different stages of aggregation that have
occurred to determine the current structure of scalar fields, while only the largest stage
of aggregation m = n is visible in the field concentration PDF. Note that the evolution
of m with ∆x is dictated by the fractal dimension of purely advected material lines df
according to equation (2.12). This quantifies the dependency of concentration increments
on the velocity statistics, which determines df (Villermaux 2012b). Consequences for the
scaling of structure functions are discussed in the following section.

6. Structure functions and intermittency

A surrogate of the full PDF of increments is the hierarchy of its moments q, also called
the structure functions when their scaling dependence on ∆x is studied

〈|∆c|q〉 =

∫
d∆c|∆c|qp∆x(∆c). (6.1)

Structure functions typically increase with ∆x, as correlation between concentrations
c(x, t) and c(x + ∆x, t) decreases and larger increments c(x + ∆x, t) − c(x, t) are sam-
pled. For spatial increments larger than the correlation length η, structure functions
are expected to reach a plateau when all possible concentration differences have been
sampled.

The scaling of structure functions with ∆x has been analyzed to characterize the
spatial structure of scalar fields in a range of flows (Warhaft 2000). Anomalous scaling
behaviors have been referred to as a manifestation of intermittent properties of scalar
fields. Intermittency has been characterized in particular by a non-linear dependency of
scaling exponents ξ(q) on the order q, where ξ(q) is such that 〈|∆c|q〉 ∼ ∆xξ(q). These
anomalous scaling behavior are generally associated with an evolution with ∆x of the
shape of increment PDFs, which cannot be collapsed upon rescaling with 〈|∆c|〉, or with√
〈∆c2〉. The scaling of structure functions with ∆x naturally derives from the theory

developed above which provides the full concentration increment PDFs. In the following,
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we discuss the resulting scaling behaviors and intermittent properties for the different
identified mixing regimes.

6.1. Minimum self-aggregation

In the regime of minimum self-aggregation, discussed in section 3, concentration values
are correlated within stretched lamellae and uncorrelated otherwise. In the correlated
domain, ∆x < η, the form of the increment PDF in equation (2.4) implies that the
structure functions should scale as

〈|∆c|q〉 ∼ ∆xq (6.2)

For ∆x > η, the structure functions are expected to be constant.
Since the characteristic lamella width η = 〈s〉 is very small (on the order of 5 to 7 µm

for the experiment described in section 3), the resolution of the experimental images pre-
sented in section 3 do not allow exploring the structure functions scaling below ∆x = 10η.
The measured structure functions in the range 10η < ∆x < 300η show a weak tendency
to grow with ∆x (figure 9). Note that the vertical scale in this figure is the same as for
the following figures to emphasize the narrow range of variation of structure functions in
this regime. This behavior is actually not far from the expected constant behavior, con-
sidering that concentration increment PDFs are broad in this regime (see inset of figure
9). In fact, the analytical predictions of equation (3.18) are in good agreement with the
measured concentration increment PDFs for all spatial increments ∆x. The increment
PDFs are broad in this regime since highly concentrated, weakly stretched, blobs of dye
can persist over long distances (see figure 2a), which induces large concentration incre-
ments. The corresponding broad distribution of mixing scales is consistent with the slow
convergence of structure functions to a constant value.

6.2. Fully developed aggregation

When aggregation is significant, structure functions are expected to grow over a large
range of scales since the correlation length η is much larger than the lamella width
(equation (4.4)). Following the deconstruction theory presented above, the evolution of
concentration increments PDFs with ∆x is controlled by the scaling of the number of
independent aggregated lamella m with ∆x, defined in (2.11). The latter is a function
of how the material lines density depends on scale, a dependence characterized by the
fractal dimension df .

For fully developed aggregation, as discussed in section 4, the concentration incre-
ment PDFs are given by equation (4.5), which leads to the following expression for their
moments,

〈|∆c|q〉 =
2qθq√

πΓ(m(∆x))
Γ

(
q + 2m(∆x)

2

)
Γ

(
1 + q

2

)
(6.3)

For large m� 1, the structure functions can be approximated by

〈|∆c|q〉 ≈ 2qθqm(∆x)
q
2

√
π

Γ

(
1 + q

2

)
(6.4)

From equation (2.11), we obtain, for ∆x < η,

〈|∆c|q〉 ∼ 2qθq√
π

Γ

(
1 + q

2

)
∆x(df−d+1) q2 (6.5)

Hence, in the correlated range, the structure functions scale as,

〈|∆c|q〉 ∼ ∆xξ(q) (6.6)
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Figure 9. Structure functions 〈|∆c|q〉 computed as a function of ∆x, for q ranging from 1 to
5, for the dispersing mixture at position x/d = 18. The structure functions are normalized by
their asymptotic value for large ∆x, 〈|∆c(η)|q〉. The vertical scale is taken as the same for the
three regimes allowing for direct comparison of the structure functions (see figures 10 and 11).
Inset: concentration increments for ∆x = {10η, 50η, 100η, 200η, 250η, 300η}, normalized by their
first moment 〈|∆c(∆x)|〉. The curves are shifted by an arbitrary value for clarity. Simulations
are shown as full lines and the analytical solution of equation (3.17) in dashed lines.

with ξ(q) = (df − d+ 1)q/2, while for ∆x > η, the structure functions are constant since
m(∆x) = n.

As expected, the scaling of structure functions is directly dependent on the material
line fractal dimension df . For space-filling material lines, df = d, and ξ(q) = q/2. The
evolution of the structure functions with the spatial increment, measured from the turbu-
lent jet experimental data, under confinement by a duct, is in relatively good agreement
with the predictions (figure 10). Note that, although the agreement with the full incre-
ment PDFs is quite good (inset of figure 10), the match for the structure function is less
good for larger orders q, which are more sensitive to experimental noise.

Compared to the minimum aggregation scenario (equation (6.2)) the exponents ξ(q)
are reduced by a factor two (equation (6.6)). This significant change in structure function
scaling quantifies the impact of aggregation on the attenuation of concentration differ-
ences. Since the exponent ξ are linear with q (6.6), scalar fields in this regime do not show
intermittent properties. This is also evident from the inset of figure 10, which shows that
the shape of concentration increments are nearly invariant with ∆x upon rescaling with
〈|∆c|〉. As discussed in the following section, the situation is different for non space-filling
material lines that show significant intermittency.
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Figure 10. Structure functions 〈|∆c|q〉 computed as a function of ∆x, for q ranging from 1
to 5, for the confined mixture at a distance 4L from the source. The structure functions are
normalized by their asymptotic value for large ∆x, 〈|∆c(η)|q〉. The dashed lines represent the
prediction of equation (6.3), with m(∆x) given by equation (2.12). The vertical scale is taken
as the same for the three regimes allowing for direct comparison of the structure functions
(see figures 9 and 11). Inset: concentration increments for ∆x = {0.2η, 0.3η, 0.7η, 2.5η, 3η, 3.5η}
(same curves as in figure 5b but normalized by the first moment 〈|∆c(∆x)|〉). The curves are
shifted by an arbitrary value for clarity. Simulations are shown as full lines and the analytical
solution of equation (4.5) in dashed lines.

6.3. Partial aggregation

Non space-filling material lines, which develop in highly heterogeneous flow fields, lead to
an extended regime of partial aggregation, as discussed in section 5. Based on expression
(5.9), derived for the increment PDFs, the structure functions may be approximated as
follows (see Appendix B)

〈|∆c|q〉 ≈ [(m− 1)θ]q

√
πerf

[√
q ln((m− 1)θ/ε)

]
2
√
q ln((m− 1)θ/ε)

+

√
π

2
√
q ln[(m− 1 + q)θ/ε]

θqΓ(m+ q,m− 1)

Γ(m)
. (6.7)

The predictions of equation (6.7) are in relatively good agreement with the numerical
simulations (figure 11). Note however that the curves are more noisy for large values of
q, for which structure functions are more sensitive to experimental noise. For n� q, the
structure functions are

〈|∆c|q〉 ≈ [(m(∆x)− 1)θ]q
√
π

2
√
q ln((m(∆x)− 1)θ/ε)

, (6.8)



Scalar Gradients in Stirred Mixtures 25

which gives, using the scaling m(∆x) ∼ ∆xdf−d+1 for ∆x < η,

〈|∆c|q〉 ∼ ∆xξ(q). (6.9)

with ξ(q) = (df − d + 1)q. The exponent characterizing the scaling of the structure
functions with ∆x, namely ξ = (df − d+ 1)q differs by a factor 1/2 from that of the full
aggregation regime (equation (6.6)). Hence, the presence of concentration lacunarities
has a strong impact on structure functions as it tends to promote large concentration
differences. Furthermore, the dependence of the structure functions on ∆x is not exactly
a power law, and both the order q and the spatial increment ∆x appear in the pre-
factor of the power law in equation (6.8). This reflects the intermittency observed for
the increment PDFs, whose shape evolves as a function of the spatial increment ∆x (see
inset of figure 11). Hence, this regime differs from the fully developed aggregation scenario
that showed stable shapes of concentration increment PDFs at different ∆x (see inset of
figure 10). This result provides a theoretical basis for understanding and quantifying the
role of the coexistence of concentration lacunarities and dense lamella aggregates on the
development of intermittent scalar fields. It suggests that the lack of scaling form of the
concentration increment PDFs for different spatial increments, which is a clear signature
of intermittency observed here for the partial aggregation case (see the inset of figure
11), can lead to a break down of the power law behavior of structure functions. Note
that this lack of power law scaling could be potentially misinterpreted as a non-linear
dependency of the exponent ζ(q) on q.

7. Conclusion and further remarks

The distribution of scalar increments in fluids reflects the multiscale spatial correla-
tions that develop in concentration fields as a result of the interplay between diffusion
and the repeated stretching actions of the flow. In this study, we have presented a gen-
eral framework that unravels the spatial structure of scalar fields from the understanding
of their basic composition rules. Considering the construction of mixtures as a random
aggregation process, with stretched lamellae as elementary aggregated objects, we have
developed the corollary concept of random field deconstruction: the difference operator,
when applied to a scalar field resulting from diffusive aggregation, dissociates the indepen-
dent from the common lamellae that contribute to concentration values at neighboring
locations (figure 1c). We have quantified this phenomenon by deriving the number of
independent aggregated lamellae m subsisting after differentiation. The latter increases
with the spatial increment ∆x to finally reach the global mean aggregation number n at
the characteristic correlation length η.

We have shown through different examples that the increments of a field evolving
through a self-convolution process follow the basic rules of deconstruction developed in
this study. Their statistics are governed by the random aggregation of m(∆x) lamellae,
where m(∆x) characterizes the scale dependency of lamella density. Based on this theory,
general analytical expressions for concentration increments are derived, which are in good
agreement with the results of turbulent flow experiments and porous media flow simu-
lations representative of the different possible regimes of aggregation. This framework
also yields analytical expressions for structure functions, which allow understanding the
origin of different observed scaling behaviors and their consequence for the development
of intermittent scalar fields.

We have singled-out, and studied two distinct, extreme scenarios directing the fate
of a mixture: The ever dispersing mixture on one hand is a collection of sheets with
distributed, independent histories. The confined mixture on the other hand is a stack
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Figure 11. Structure functions 〈|∆c|q〉 computed as a function of ∆x, for q ranging from 1 to
5, for the porous media simulation at time t = 112.5τa (σ2

ln K = 1, Pe = 80). The structure
functions are normalized by their asymptotic value for large ∆x, 〈|∆c(η)|q〉. The predictions
of equation (6.7) are shown as dashed lines. The vertical scale is taken as the same for the
three regimes allowing for direct comparison of the structure functions (see figures 9 and 10).
Inset: concentration increments for ∆x = {η/64, η/32, η/16, η/8, η/4, η/2, η, 2η} (same curves
as in figure 8b but normalized by the first moment 〈|∆c(∆x)|〉). The curves are shifted by an
arbitrary value for clarity. The simulations are shown as full lines and the predictions of equation
(5.9) as dashed lines.

of sheet bundles which synchronically merge with each other. Natural mixtures may be
closer from one, or the other of these two caricatures, but will in general incorporate both
ingredients, in given relative proportions depending on the way they have been prepared.
The partially aggregated fields in section 5 are such examples.

Figure 12 shows how a mixture in the channel, close to the entrance section, is itself
a mixture of the two idealized cases above. Bundles of not yet overlapping sheets are
immersed in an already mixed environment. These two regions, in the language developed
in this paper, are characterized by two different values of n, one large for the well-mixed
region, the other smaller reflecting the younger age of the not yet mixed bundle of still
distinct sheets. The overall concentration PDF is a weighted average of two Gamma
distributions

pc(x = c/〈c〉) = f
nn1

1

Γ(n1)
xn1−1e−n1x + (1− f)

nn2
2

Γ(n2)
xn2−1e−n2x, (7.1)

the fraction f standing for the relative proportion of regions with n1. Obviously, the
increment PDF in that case will be the same weighted average of the increment PDFs
in equation (4.5), each with the appropriate n. The overall increment PDF behavior will
be dominated by the contribution of the large n (well mixed) regions near ∆c = 0, and
its tails will reflect those of the lower n regions (incorporating large concentration ex-
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Figure 12. a) A snapshot of the scalar field in the channel at Re = 2000 showing a bundle of not
yet overlapping sheets immersed in an already mixed environment. The two regions (environment
and bundle) have n1 = 27 and n2 = 9.7, and their relative proportion as in equation (7.1) is
such that f = 0.8, as shown in b).

cursions), thus enhancing the intermittent (broad) character of the PDF. The procedure
can thus be applied to a wealth of different situations.

This theoretical framework is expected to be of broad relevance for mixing in fluids, as
illustrated here for three different flow fields, including turbulent flows at large Reynolds
numbers and porous media flows at low Reynolds numbers. The fact that the developed
framework applies equally well to flow fields of very different natures suggests a high
degree of universality of its underlying principles. In this framework, the velocity field
statistics play an important role in determining the stretching dynamics (e.g. linear,
power law or exponential) and the likelihood of lamellae to aggregate, as quantified
from the fractal dimension of purely advected material lines. Hence different velocity
field statistics would yield different concentration and concentration increment PDFs.
A distinction between intermittent and non-intermittent regimes can be drawn in this
framework by analyzing the probability of non-space filling material lines to develop,
which leads to partial aggregation and thus intermittency. This probability is linked to
the velocity statistics through the fractal dimension df , that depends on the ratio between
the dispersion rates, which creates new voids, and the elongation rate, which tends to fill
these voids.

The deconstruction theory brings new light on the significance of increment distri-
butions and provides a way to decipher the composition rules of concentration fields.
While the concentration PDF only depends on the current stage of aggregation n, the
concentration increment PDFs uncovers the different stages of aggregation that have
determined the state of a mixture. Spanning through the range of spatial increments
∆x allows investigating the full range of aggregation stages from the basic elementary
lamellae or ‘quantum’ (m = 1) for small ∆x to the current stage of aggregation (m = n)
at large ∆x.

Finally, we note that the domain of application of the present ideas is likely to extend
beyond the context of scalars where it has been conceived, since these ideas naturally
apply to any field constructed by the addition of a random variable. In this respect,
waves overlapping at random, like sound waves (Rayleigh 1880), sea waves, capillary
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waves (Greffier et al. 2002), or the structure of the speckle in optics (Goodman 2007)
are, among others including fracture (Vernède et al. 2015), and turbulent boundary layers
(Yang et al. 2016), obvious candidates.
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Appendix A. Approximation for the number of independent lamellae
contributing to aggregates as a function of the
separation distance m(∆x)

In order to estimate the number of independent lamellae that contributes to concen-
tration values at two positions separated by a distance ∆x (blue and red curves in figure
1), we quantify the typical scale r(∆x) of non-overlap of the two lamella aggregates that
determine the respective concentration values (sum of blue and purple curves on the one
hand and sum of red and purple curves on the other hand). We first determine the scale
of overlap of two lamella aggregates, which are separated by a distance ∆x. We assume
that the concentration across an aggregate whose center is located at the position xi can
be represented by the isotropic Gaussian

pa(x|xi) =
a2 exp

(
−a

2|x−xi|2
4η2

)
4πη2

, (A 1)

where η is the correlation scale. We set here a = 2
√

2. Consider now the line joining
the two centers x1 and x2. The distribution of points of overlap along this line may be
written as

pol(x
′) =


exp

[
− 2(x′−∆x/2)2

η2

]
√
πη2/2

, x′ < 0

exp

[
− 2(x′+∆x/2)2

η2

]
√
πη2/2

, x′ > 0

. (A 2)

where we chose the coordinate system aligned with x1 − x2 and origin located at (x1 +
x2)/2. The global probability of overlap can then be estimated as

Pol(∆x) =

∆x
2∫

−∞

dx′
exp

[
− 2(x′−∆x/2)2

η2

]
√
πη2/2

+

∞∫
∆x
2

dx′
exp

[
− 2(x′+∆x/2)2

η2

]
√
πη2/2

= erfc

(
∆x

η

)
.

(A 3)

The overlap probability can also be written as Pol = rol/η, this means, the ratio of the
characteristic overlap distance rol to the lamellae size η. From this, we obtain for rol the
expression rol = η erfc (∆x/η). Consequently, the distance r of no overlap is given by
r(∆x) = η− rol = η [1− erfc (∆x/η)]. Thus, we obtain for the number of lamellae in the
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region of no overlap

m(∆x) = n

(
r(∆x)

η

)df−d+1

= n erf

(
∆x

η

)df−d+1

, (A 4)

where n is the number of lamellae in the aggregates. Expression (A 4) is equivalent to
equation (2.11) for ∆x� η and converges smoothly to n for ∆x� η.

Appendix B. Approximation of the concentration PDF for confined
dispersing mixtures

In order to obtain an approximation for the PDF (5.3), we perform the variable trans-
form z = x/θ such that

pc(c) =

∞∫
c/θ

dz
zn−1

Γ(n)

exp(−z)
2c
√

ln(zθ/ε) ln(zθ/c)
=

∞∫
c/θ

dz
1

Γ(n)

exp[−z − n′ ln(z)]

2c
√

ln(zθ/ε) ln(zθ/c)
(B 1)

We scale now z = x/n′, with n′ = n− 1 and obtain

pc(c) =
n′ exp[n′ ln(n′)]

Γ(n)

∞∫
c/(n′θ)

dz
exp{−n′[z − ln(z)]}

2c
√

ln(zn′θ/ε) ln(zn′θ/c)
(B 2)

Notice that z − ln(z) has a minimum at z0 = 1. Thus, for c/(n′θ) < 1, we use a saddle
point approximation to obtain

pc(c) ≈
n′ exp[n′ ln(n′)− n′]

Γ(n)

∞∫
c/(n′θ)

dz
exp[−n′(z − 1)2/2]

2c
√

ln(zn′θ/ε) ln(zn′θ/c)
(B 3)

Thus, for n′ sufficiently large, we obtain the approximation

pc(c) ≈
√

2πn′ exp[n′ ln(n′)− n′]
Γ(n)

1

2c
√

ln(n′θ/ε) ln(n′θ/c)
(B 4)

The first terms is equal to 1 as is immediate by using Stirling’s approximation. Thus, the
PDF can be approximated by

pc(c) =
1

2c
√

ln(n′θ/ε) ln(n′θ/c)
(B 5)

For c/(n′θ) > 1, z − ln(z) is minimum at the lower integral limit c/(n′θ) = γ. Thus,
we approximate now in (B 2)

z − ln(z) ≈ γ + ln(γ) +
γ − 1

γ
(z − γ). (B 6)

And furthermore

1√
ln(z/γ)

≈
√

γ

z − γ
. (B 7)

Thus, we obtain for pc(c) by inserting these approximations in (B 2) and executing the
remaining integral

pc(c) =
n′ exp[n′ ln(n′)]

Γ(n)

exp[−n′γ + n′ ln(γ)]

2c
√

ln(γn′θ/ε)

γ√
γ − 1

√
π

n′
. (B 8)
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Inserting γ = c/(n′θ), we obtain

pc(c) =
cn
′

2θn′+1Γ(n)

exp(−c/θ)√
ln(c/ε)

√
π/n′√

c/(n′θ)− 1
. (B 9)
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