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Géosciences, Université de Montpellier 2, CNRS, Montpellier, France

(Dated: June 10, 2016)

In our paper we studied self-averaging and ergodicity for anomalous diffusion in quenched random media. We
concluded that diffusion is both self-averaging and ergodic in d ≥ 2 and non-self-averaging and non-ergodic in d < 2.
While our main results regarding the self-averaging property remain unchanged, we revise here the statement on
ergodicity, correct the calculation that led to it, and develop the correct results for the ergodicity property. The
time-average mean square displacement is in fact weakly non-ergodic, which is consistent with Refs. [1–4]. In order
to clarify these points, we briefly restate the problem setup, and the definitions of the noise average and time-average
mean square displacements.

Particle motion is described by the Langevin equation

dx(t) =

√
2κdt

θ[x(t)]
ξ(t), (1)

where x(t) is the position of a diffusing particle, the ξ(t) are identical independently distributed Gaussian random
variables with a mean of 0 and unit variance, κ is the constant diffusion coefficient. The mobility θ(x) represents the
quenched disorder. This model is equivalent to a quenched random trap model, which can be seen, by performing the
transformation ds = θ[x(t)]−1dt such that

dx(s) =
√

2κdsξ(s), dt(s) = θ[x(s)]ds. (2)

Equation (2) is coarse-grained on the characteristic length scale `, which gives the recursion relation

xn+1 = xn + `ηn, tn+1 = tn + θ(xn)τ̂n, (3)

as given by Eq. (7) in the manuscript; the τ̂n are identical independently distributed exponential random variables
with the characteristic time τκ = `2/(2κ). The particle position is now given by x(t) = xnt with nt = sup(n|tn ≤ t) the

number of steps needed to reach time t. The operational time s(t) = snt , where sn =
∑n−1
i=0 τ̂i is Gamma-distributed

with mean nτκ. Thus in the following, we set s(t) = ntτκ.
The mean square displacement in a single medium realization it given by the noise average m(t) =

〈
x(t)2

〉
. We

obtain from (1) by using the Ito interpretation,

m(t) = 2κd

〈 t∫
0

dt′θ[x(t′)]−1

〉
= 2κd〈s(t)〉 = d`2〈nt〉, (4)

where we used ds = θ[x(t)]−1dt. The time averaged mean square displacement is defined as

m∆(t) =
1

t−∆

t−∆∫
0

dt′x∆(t)2 (5)

where x∆(t) is given by

x∆(t) =

t+∆∫
t

dt′
√

2κθ[x(t′)]−1ζ(t′) (6)
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with ζ(t) a Gaussian white noise. We consider the limit of ∆/t� 1, for which we obtain

x∆(t) =
√

2κθ[x(t)]−1w∆(t), w∆(t) =

t+∆∫
t

dt′ζ(t′), (7)

with 〈w∆(t)〉 = 0 and 〈w∆(t) ·w∆(t′)〉 = d∆ if |t− t′| < ∆ and 0 else. Thus, we obtain for m∆(t)

m∆(t) =
2κd∆

t

t∫
0

dt′θ[x(t′)]−1 =
2κd∆

t
s(t) =

d`2∆

t
nt, (8)

where we set w∆(t)2 = d∆. In order to study the ergodicity of the diffusion process, we consider the variance of
m∆(t) with respect to its noise average

σ2
∆(t) = 〈m∆(t)2〉 − 〈m∆(t)〉2, (9)

where 〈m∆(t)〉 is given by

〈m∆(t)〉 =
m(t)∆

t
. (10)

The noise mean square of m∆(t) is given by

〈m∆(t)2〉 =
4κ2d2∆2

t2

〈 t∫
0

dt′θ[x(t′)]−1

t∫
0

dt′′θ[x(t′′)]−1

〉
=

4κ2d2∆2

t2
〈
s(t)2

〉
=
d2`4∆2

t2
〈
n2
t

〉
. (11)

This equation corrects Equation (13) in the Supplementary Material of our paper, in which we erroneously stated
that 〈m∆(t)2〉 = m(t)2∆2/t2. This, however disregards correlations between θ[x(t′)] and θ[x(t′′)]. Based on this
statement, we concluded that the noise variance σ2

∆(t) of the time average mean square displacement in a single
disorder realization was 0 and thus that diffusion was ergodic. We clarify this in the following.

In our paper, we analyze both numerically and analytically the variance σ2
m(t) = m(t)

2
−m(t)2 and the relative

variance

Σ(t) =
σ2
m(t)

m(t)2
(12)

which probes the disorder sample to sample fluctuations of m(t), the noise average mean square displacement. We
find in our paper that Σ(t) goes asymptotically to 0 for d ≥ 2, which means that m(t) is self-averaging. For d < 2,
Σ(t) goes towards a constant, which means that m(t) is not self-averaging. While these statements are true for the
self-averaging property of m(t), they are not for the ergodicity of m∆(t), the time average mean square displacement.

In order to probe ergodicity, we quantify the noise variance (9). Notice that the noise variance σ2
∆(t) fluctuates

between disorder realizations. However, we have shown in our paper that the ensemble average is asymptotically a
good estimator for the noise average, at least for the mean square displacement m(t) in d ≥ 2 dimensions because

m(t) is self-averaging. Based on this, we use the ensemble average σ2
∆(t) as an estimator for σ2

∆(t) and the ensemble

average 〈m∆(t)〉 as an estimator for 〈m∆(t)〉 in d ≥ 2. Using (8) and (10) in (9) and performing the disorder average,
we obtain

σ2
∆(t) =

∆2

t2

[
d2`4〈n2

t 〉 −m(t)2
]
. (13)

We rewrite the latter in the form

σ2
∆(t) =

d2`4∆2

t2

[
〈n2
t 〉 − 〈nt〉

2
]
− ∆2

t2

[
m(t)2 −m(t)

2
]
, (14)

where we note that m(t)
2

= d2`4〈nt〉
2
. Notice that the first expression in square brackets denotes the disorder variance

σ2
n(t) of the number of steps nt to reach time t. The second term in square brackets denotes the disorder variance
σ2
m(t) of the noise average mean square displacement m(t). Thus, we can restate (14) as

σ2
∆(t) =

∆2

t2
[
d2`4σ2

n(t)− σ2
m(t)

]
. (15)
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This relation implies that at finite times σ2
n(t) ≥ σ2

m(t)/(d2`4) > 0. Thus, in order to study the ergodicity property
for d ≥ 2, we now focus on the variance σ2

n(t) of nt [1–3], the number of steps to reach time t.
We follow the methodology developed in our paper in order to determine explicit results for σ2

n(t). The disorder
ensemble expectation nt is encoded in m(t), see Equation (31) in the Supplementary Material of our paper. The

disorder ensemble expectation of n2
t is given by

n2
t =

∞∑
n=0

n2δn,nt =

∞∑
n=0

n2I(tn ≤ t < tn+1). (16)

It is independent on the noise such that we can omit the noise averages in the variance σ2
n(t). We evaluate the scaling

of this sum by using expression (29) developed in the Supplementary Material of our paper for the average of the
indicator function, which reads as

In(t) ≡ I(tn ≤ t < tn+1) =
t

αn

d ln(αn)

dn
fβ(t/αn), (17)

where αn = nS
1−β
β

n ; Sn is the average number of distinct sites visited by a random walker, which depends on the
dimension of space. For d = 2, we find that

n2
t ∝ t2β ln(t)2−2β ∝ nt2. (18)

This implies that σ2
n(t) ∝ t2β ln(t)2−2β because at finite times σ2

n(t) > 0. And for d > 2, we obtain

n2
t ∝ t2β ∝ nt2, (19)

which implies that σ2
n(t) ∝ t2β . Thus, σ2

n(t) > σ2
m(t)/(d2`4), compare to Eqs. (21) and (22) in our paper. This

implies that

σ2
∆(t) =

∆2

t2
d2`4σ2

n(t) + . . . . (20)

Furthermore, the disorder average of 〈m∆(t)〉 is given by

〈m∆(t)〉 =
∆

t
m(t) =

∆

t
d`2nt. (21)

This implies that the ergodicity breaking parameter of Ref. [2], which in our notation reads as

EB =
σ2

∆(t)

〈m∆(t)〉
2 =

σ2
n(t)

nt
2 + . . . (22)

goes towards a constant for t → ∞. This implies that the time-average mean square displacement is weakly non-
ergodic in d ≥ 2, which is consistent with Refs. [1–4]. For d < 2, we cannot make a statement on the ergodicity based
on the disorder averages of σ2

∆(t) and 〈m∆(t)〉 because m(t) is not self-averaging.
In summary, unlike stated in our paper, the time-average mean square displacement m∆(t) is weakly non-ergodic for

d ≥ 2. The noise mean square displacement m(t), on the other hand is self-averaging for d ≥ 2 and non-self-averaging
in d < 2, as found in our paper.
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