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Abstract Random walk (RW) methods are recurring Monte Carlo methods used
to model convective and diffusive transport in complex heterogeneous media. Many
applications can be found, including fluid mechanic, hydrology, and chemical re-
actors modeling. These methods are easy to implement, very versatile and flexible
enough to become appealing for many applications because they generally overlook
or deeply simplify the building of explicit complex meshes required by deterministic
methods. RW provide a good physical understanding of the interactions between
the space scales of heterogeneities and the transport phenomena under consider-
ation. In addition, they can result in efficient up-scaling methods, especially in
the context of flow and transport in fractured media. In the present study, we
review the applications of RW to several situations that cope with diverse spatial
scales, and different insights into up-scaling problems. The advantages and down-

B. Noetinger
IFPEN 1-4 avenue de Bois Préau, 92852, France
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Université de Rennes 1, CNRS, Géosciences Rennes, UMR 6118, Rennes, France

F. Delay
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sides of RW are also discussed, thus providing a few avenues for further works and
applications.

Keywords Random walk · Random Media · Fractured media · Diffusion ·
Dispersion · Up-scaling · Transfers · Multiple Porosity

1 Introduction

In the early 20 th century, thanks to seminal contributions of major scientists
such as Einstein, Langevin, le Chatelier and Wiener among others, the Random
walk (RW) approach introduced the first quantified depiction of brownian motion
which resulted in a fruitful microscopic picture of the diffusion mechanism (Scher
et al, 2002a). The conceptual simplicity of RW associated with its easiness of im-
plementation were conductive to a fast dissemination of associated techniques and
algorithms in many areas of science, from biology and colloidal science to modern
finance, including statistical physics, chemical engineering, and geosciences. Re-
garding the latter topic, many applications can be found in the field of hydrology,
oil and gas industry or subsurface repository of various wastes. As an illustration,
RW techniques can also be employed as a direct simulation technique for passive
tracer or pollutant transport in aquifers (Kinzelbach, 1988; Kinzelbach and Uffink,
1991; Zimmermann et al, 2001; Hoteit et al, 2002b; Delay et al, 2005). At the labo-
ratory scale, the recent advances in the imaging techniques of rock textures provide
high resolution pictures of the pore space (Nunes et al, 2015). This very exhaus-
tive and complex information needs for post-processing aimed at inferring effective
transport properties in porous media such as permeability, porosity, and electrical
conductivity, to mention a few. For example, electrical conductivity was first com-
puted using RW by Kim and Torquato (1992) and several authors ((Sahimi, 2011)
and reference therein). At the same pore-to-sample scale, RW techniques were also
used to interpret Nuclear Magnetic Resonance (NMR) data (Néel et al, 2011, 2014;
Guillon et al, 2013, 2014; Fleury et al, 2015). At a larger scale, typically from m
to km, a major issue of various applications, especially those performing flow and
transport simulations in subsurface reservoirs, is the capability of accounting for
the detailed natural variability of the host medium with the maximum accuracy
over objects of large sizes (typically several km in the case of aquifers or oil & gas
reservoirs). These applications range from a better understanding of the fate of
pollutants in the subsurface, to improving oil and gas recovery. At the large scale,
most calculations are still performed using Finite Volume, Finite Difference or Fi-
nite Element approaches requiring a high resolution and cumbersome meshing to
represent the geometry of the modeled domain. However, because the size of an
elementary mesh is often too large, discrete descriptions of the domain may also
require the availability of effective transport equations at the scale of the mesh and
accounting for eventual unresolved sub-grid scale effects. In most cases, it is as-
sumed that transport is still ruled by the Advection Dispersion Equation (ADE)
which is of questionable validity at the small scale (Matheron and de Marsily,
1980; Bouchaud and Georges, 1990; Berkowitz and Scher, 1998; Berkowitz et al,
2000; Scher et al, 2002a; Néel et al, 2011). In addition, the parameters associ-
ated with flow and transport are usually poorly known a priori and have to be
inferred by facing model outputs with available data. RW techniques are good
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candidates for both identifying sub-grid effects and parameters (Berkowitz and
Balberg, 1993; Néel et al, 2011). In particular, obtaining valuable descriptions
of transport in low permeability media concealing widespread heterogeneities in-
volving stagnant zones, adsorption and chemical reactions properties is of major
interest. These highly disordered media can exhibit very rich anomalous transport
properties preventing any classical description relying upon standard Darcy’s law
and ADE. RW methods can for instance represent ”fractional derivative” trans-
port equation accounting for memory effects over wide ranges of time (Matheron
and de Marsily, 1980; O’Shaughnessy and Procaccia, 1985; Charlaix et al, 1987;
Barker, 1988; Chang and Yortsos, 1990; Bouchaud and Georges, 1990; Metzler
et al, 1994; Noetinger and Gautier, 1998; Metzler and Klafter, 2000). In the ex-
treme case of fractured media, Continuous Time Random Walk (CTRW) or Time
Domain Random Walk (TDRW) algorithms techniques were successfully employed
to determine transfer functions that are key for implementing the so called dual
porosity models (Noetinger and Estebenet, 2000; Noetinger et al, 2001a,b).

RW algorithms are very well suited to capture the motion and the spreading
of a diffusive set of particles representing a tracer plume in an advecting flow field.
The rather subtle interplay between molecular diffusion and the heterogeneous
velocity field can be simulated directly, resulting in a clear physical interpretation
of the relevant characteristic times and scales prevailing during transport. Ana-
lytical results of the Taylor and Aris (Taylor, 1954; Aris, 1956) dispersion can
be retrieved (Salles et al, 1993). In turn, these results can be used to estimate
dispersivity in more complex geometries. In the case of spatially varying diffusion
coefficients, including discontinuous cases, the RW may experience some difficul-
ties. To avoid spurious accumulation of particles in low diffusivity zones, some
”reflection rules” have to be imposed at the locations of discontinuities (Kinzel-
bach, 1988; Kinzelbach and Uffink, 1991; Hoteit et al, 2002b). In addition, the
algorithm can become inefficient in low diffusivity zones because the spatial time
step needed for an accurate resolution of transport can become very small. Both
issues can be corrected using suitable time step increments that avoid expansive
and unnecessary iterations in low velocity and low diffusion zones. The main idea
is using fixed spatial meshes instead of even time steps. In that framework, RW
methods loose their original ”meshless character”, and are found to be connected
to usual Finite Volume schemes. This leads to model diffusion over a fixed lat-
tice or graph that can be built with standard meshing tools. For its part, the
residence time at a given site becomes a random variable, with the consequence
that the resulting algorithm belongs to a wider class of techniques, namely the
Time Domain Random Walk (TDRW). These TDRW algorithms are also partic-
ularly well suited to implementations on highly parallel computing resources. An
additional interest is that the resulting formulation is quite close to the classical
solutions as that provided by standard numerical analysis. Anomalous dispersion
effects mainly due to the persistence of large scale correlations in a flow field can
thus be simulated using RW with suitable kernels (Berkowitz and Scher, 1998;
Berkowitz et al, 2000; Néel et al, 2011; Scher et al, 2002a,b). For their numerical
part, RW methods can be implemented using structured or unstructured meshes,
which allows to tackle the problem of diffusion in very complex media, includ-
ing fracture networks (Noetinger and Estebenet, 2000; Noetinger et al, 2001a,b;
Roubinet et al, 2010, 2013). Adsorption phenomena, as well as chemical reactions
can also be accounted for. By nature, RW methods are very well suited for highly
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parallel computing architectures which reveals useful to perform calculations over
complex domains or when moving multiple reacting species in solution.

RW methods provide interesting insights into transport mechanisms that can
enlighten us about our understanding of mixing processes in disordered flows. In
the case of fractured media, a careful interpretation of the output of RW sim-
ulations give efficient and direct tools to parameterize multiple porosity large
scale models by way of a complete determination of transient transfer functions
(Noetinger and Estebenet, 2000; Noetinger et al, 2001a,b; Roubinet et al, 2010,
2013). These functions can thus help to pattern multiple rate transfer models
(Haggerty and Gorelick, 1995) or Multiple Interacting Continua (MINC) models
(Narasimhan and Pruess, 1988). Characteristic exponents associated with anoma-
lous diffusion/dispersion processes can be estimated using RW methods (de Ar-
cangelis et al, 1986; Berkowitz and Scher, 1997; McCarthy, 1993a; Koplik et al,
1988; Bouchaud and Georges, 1990), as well as the REV or mixing lengths, even
if large scale practical simulations still remain the playing field of conventional
meshed models.

The goal of the present paper is to review the state of the art regarding appli-
cations of RW, TDRW or CTRW to the up scaling of flows and mass transfers in
heterogeneous and fractured media.

The contribution is organized as follows. We first review in section 2.4 the un-
derlying theory of RW algorithms for solving an advection diffusion equation. We
focus on TDRW that solves spatially discretized equations having the same form
than those arising from Finite Volume discretization of advection dispersion opera-
tors. Next, numerical issues are addressed, from fully coupled advection dispersion
diffusion equations 3 to purely diffusive issues including heterogeneous, fractured
media and the double porosity large scale description 3.3. These models can be
generalized to Multiple Rate Transfer Models involving transfer functions between
the matrix and the fractures that can be evaluated using TDRW techniques. In
a next section 3.5, application of RW to understanding and modeling mixing are
discussed. Applications from pore to field scale 4, including radial flows in the
vicinity of wells are discussed. Finally, some other applications are discussed and
some conclusions and avenues for future research are discussed.

2 Theoretical Background for Random Walk Methods

This section summarizes the basis on which random walk methods are built to de-
scribe solute transport in heterogeneous media. We start with classical or discrete
time random walks, then briefly review its generalization to the continuous time
random walk (CTRW) framework. Based on the CTRW approach, we report on the
fundaments of the time domain random walk method (TDRW). Finally, we review
the use of the CTRW as an averaging framework for transport in heterogeneous
media.

2.1 Classical (Discrete-Time) Random Walks

Classical random walk particle tracking is based on the equivalence between the
Fokker-Planck equation and the equation of motion of solute particles subject to
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advective and diffusive-dispersive mass transfer. A general Fokker-Planck equation
for the scalar quantity P (x, t) can be written as (Risken, 1996)

∂P (x, t)

∂t
+∇ · [v(x)P (x, t)] +∇⊗∇ : [B(x)P (x, t)] = 0, (1)

where ⊗ denotes the outer and : the inner tensor product. The drift vector and
dispersion tensor are denoted by v(x) and B(x), respectively. As shown in Ap-
pendix A, this Fokker-Planck equation is exactly equivalent to the Langevin equa-
tion

dx(t)

dt
= v[x(t)] +

√
2B[x(t)] · ζ(t), (2)

where
√

B(x) is the square-root of the tensor B(x), ζ(t) denotes a Gaussian white
noise characterized by zero mean 〈ζ(t)〉 = 0 and variance 〈ζi(t)ζj(t′)〉 = δijδ(t−t′).
The angular brackets denote the noise average over all particles. The particle
distribution P (x, t) can be written in terms of the particle trajectories x(t) as

P (x, t) = 〈δ[x− x(t)]〉. (3)

We name this modeling approach as a discrete time random walk because particle
positions are incremented in constant time intervals as

x(t+ dt) = x(t) + v[x(t)]dt+
√

2B[x(t)] · η(t), η(t) =

t+dt∫
t

dt′ζ(t′). (4)

Note that we use here the Ito interpretation of the stochastic integral (Risken,
1996). The random increment η(t) has zero mean and variance 〈ηi(t)ηj(t)〉 = δijdt.

Solute or heat transport as well as hydraulic head propagation in a heteroge-
neous porous medium are not in general described by a Fokker-Planck equation of
the form (1), but the advection dispersion equation (ADE) for the scalar c(x, t)

φ(x)
∂c(x, t)

∂t
+∇ · [u(x)c(x, t)]−∇ · [D(x)∇c(x, t)] = 0. (5)

For solute transport c(x, t) denotes the concentration, φ(x) is the porosity and
D(x) is the hydrodynamic dispersion tensor. For hydraulic head propagation, we
set the flow velocity u(x) = 0, φ(x) denotes the specific storage and D(x) is the
hydraulic conductivity tensor. It is important to note that c(x, t) in (5) is not a
conserved quantity because it is φ(x)c(x, t) that is conserved. Thus, introducing

P (x, t) = φ(x)c(x, t), (6)

which satisfies the equation

∂P (x, t)

∂t
+∇ ·

[
u(x)

φ(x)
P (x, t)

]
−∇ ·

[
D(x)∇P (x, t)

φ(x)

]
= 0. (7)

We can reformulate this equation in the form of the Fokker-Planck equation (1)
as

∂P (x, t)

∂t
+∇ ·

[
u(x)

φ(x)
+
∇ ·D(x)

φ(x)

]
P (x, t)−∇⊗∇ :

[
D(x)

φ(x)
P (x, t)

]
= 0. (8)
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Through the equivalence between (1) and (2), we find the Langevin equation that
is equivalent to (5) as (Kinzelbach, 1988)

dx(t)

dt
=

u[x(t)]

φ[x(t)]
+
∇ ·D[x(t)]

φ[x(t)]
+

√
2D[x(t)]

φ[x(t)]
· ζ(t). (9)

The solute concentration c(x, t) is given in terms of the particle trajectories through (3)
and (6) as

c(x, t) =
〈δ[x− x(t)]〉

φ(x)
. (10)

2.2 Continuous Time Random Walks

We present here a generalization of the previous depiction of discrete time random
walk to continuous time (Berkowitz et al, 2002, 2006). The particle position and
time are now incremented at each random walk step as

xn+1 = xn + A(xn), tn+1 = tn + τ(xn). (11)

The random space and time increments A(xn) and τ(xn) depend in general on
the particle position and they can be coupled (Scher and Lax, 1973a), and char-
acterized by their joint probability density function (PDF) ψ(a, t; x). Notice that
both space and time are continuous variables. The particle density P (x, t) can be
described by the following system of equations (Berkowitz et al, 2002; Srinivasan
et al, 2010)

P (x, t) =

t∫
0

dt′R(x, t′)

∞∫
t−t′

dt′′ψ(t′′; x) (12a)

R(x, t) = P (x, t)δ(t) +

∫
da

t∫
0

dt′ψ(a, t′; x− a)R(x− a, t− t′). (12b)

The first equation states that the probability of a particle to be in the volume
[x,x+dx] at time t is equal to the probability R(x, t′) that the particle just arrive
in the volume [x,x+dx] at a time in [t′, t′+dt′] and remains there for the duration
of t− t′. The marginal PDF of transition times is given by

ψ(t; x) =

∫
daψ(a, t; x). (13)

The second equation of 12 can be viewed as a Chapman Kolmogorov equation
for the probability density R(x, t). The linear system (12) can be solved for the
Laplace transform (Abramowitz and Stegun, 1972) of the particle density P (x, t),
which gives after some algebra the integral equation:1

sP (x, s) = P (x, 0) +

∫
da

sψ(a, s; x− a)

1− ψ(s; x− a)
P (x− a, s)∫

da
sψ(a, s; x)

1− ψ(s; x)
P (x, s). (14)

1 To simplify notations, functions with ”s” variables correspond to Laplace transforms
throughout the rest of the paper.
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Inverse Laplace transform gives the generalized Master equation (Kenkre et al,
1973)

dP (x, t)

dt
=

t∫
0

dt′
∫
daM(a, t; x− a)P (x− a, t)

−
t∫

0

dt′
∫
daM(a, t; x− a)P (x, t), (15)

where we define the memory function

M(a, s; x) =
sψ(a, s; x)

1− ψ(s; x)
. (16)

Under the assumption that M(a, t; x− a) is sharply peaked around 0 the spatial
convolution in (15) may be localized through a Taylor expansion of the integrand
about x (Berkowitz et al, 2002) such that

∂P (x, t)

∂t
+

t∫
0

dt′∇ ·
[
ν(x, t− t′)P (x, t′)

]

−
t∫

0

dt′∇⊗∇ ·
[
β(x, t− t′)P (x, t′)

]
+ · · · = 0, (17)

where the dots represent higher order contributions in the moments of M(a, t; x).
Notably, the velocity and dispersion kernels ν(x, t) and β(x, t) have been defined
in (17) as

ν(x, t) =

∫
da aM(a, t; x), β(x, t) =

∫
da a⊗ aM(a, t; x). (18)

2.3 Time Domain Random Walks

Time domain random walk (TDRW) methods have been used as efficient alter-
natives to discrete time random walks for the solution of solute transport and
flow problems in heterogeneous media as described by (5). Complementary to the
classical discrete time random walk approach, the TDRW fixes the spatial particle
transition length and asks for the time that is needed to travel over this distance.
This approach is obviously in the spirit of and inherits from the CTRW discussed
in the previous section. Let us elucidate this relation by considering the ADE (5)
discretized in space. Using a finite difference or a finite volume discretization, it
can be written (Delay et al, 2002; Dentz et al, 2012; Russian et al, 2016)

φi
dci(t)

dt
=
∑
[ij]

bijcj(t)−
∑
[ij]

bjici(t), (19)

where ci(t) is the concentration at voxel i. The notation
∑

[ij] means summation
over the nearest neighbors of voxel i. The coefficients bij are given in terms of
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the flow velocity and dispersion coefficients as (Gjetvaj et al, 2015; Russian et al,
2016)

bij =
D̂ij
ξ2

+
|uij |
2ξ

(
uij
|uij |

+ 1

)
, (20)

with the discretization length ξ. For the sake of simplicity we assume that the
discretization is uniform and that all grid cells, or voxels, have the same volume V
and surface area S. The velocity component uij of uj is the flow velocity at voxel j
in direction of voxel i, that is uij = uj ·eij , where the vector eij is oriented from j
to i. Thus, uij > 0 implies that voxel i is downstream from voxel j, and vice versa.
The dispersion coefficient D̂ij measures the dispersive mass flux between voxels
i and j. It is typically given by a suitable average of the dispersion coefficient in
neighboring voxels (Noetinger and Estebenet, 2000; Dentz et al, 2012).

The equivalence with the CTRW approach can be evidenced by following
Dentz et al (2012) and rewriting the generalized Master equation (15) in the dis-
crete space,

dPi(t)

dt
=

t∫
0

dt′
∑
[ij]

[
Mij(t− t′)Pj(t′)−Mji(t− t′)Pi(t′)

]
, (21)

where we assume that interactions of the modeled process only occur between near-
est neighbors. Furthermore, we set P (xi, t) = Pi(t) and M(xi−xj , t; xj) = Mij(t).
We assume now that the transition pdf for length and time can be decoupled into
ψij(t) = wijψj(t) with wij the probability to make a transition from j to i. We
also specify the transition time pdf as an exponential function (Scher and Lax,
1973a)

ψj(t) = exp(−t/τj)/τj . (22)

Thus, Laplace transform of the memory function Mij(t) simplifies to

Mij(s) =
wij
τj
. (23)

The generalized Master equation then reads as

dPi(t)

dt
=
∑
[ij]

wij
τj
Pj(t)−

∑
[ij]

wji
τi
Pi(t). (24)

By identifying Pi(t) = φici(t) and bij = wijφj/τj , (19) and (24) become similar.
In this sense, the discretized ADE (19) can be solved through a TDRW, whose
transition probability in space and transition time are given by

wij =
bijτj
φj

, τi =
φi∑
[ij] bji

. (25)
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2.4 The Continuous Time Random Walk as an Average Transport Approach

The CTRW approach has been used as an upscaling framework to describe aver-
age transport in heterogeneous media (Klafter and Silbey, 1980; Berkowitz et al,
2006). The pioneering works of Scher and Lax (1973a) and Scher and Lax (1973b)
model the transport of charge carries in impure semiconductors with a CTRW
whose PDF of waiting times reflects some charge trapping in the potential wells
created by charged impurities. This approach allowed for the explanation and
prediction of observed charge currents, or in other words, arrival time distribu-
tions, that show the heavy tails characterizing anomalous transport. Since then,
the CTRW has been used as an approach to model the history-dependent average
dynamics in diverse types of fluctuating and disordered systems. One can men-
tion: particle transport in media with both heterogeneity at the pore and Darcy
scales (Berkowitz and Scher, 1998, 1997; Hatano and Hatano, 1998; Berkowitz
et al, 2000; Cortis and Berkowitz, 2004; Le Borgne et al, 2008a; de Anna et al,
2013; Kang et al, 2014; Holzner et al, 2015), light dispersion in heterogeneous op-
tical media (Barthelemy et al, 2008), the description of financial distributions, the
motion and migrations of animals, and many more (Klafter and Sokolov, 2005).

In the context of average transport or transport upscaling for heterogeneous
media, the CTRW maps the spatial distributions of the fluctuating medium prop-
erties onto the (joint) distribution of transition lengths and durations ψ(a, t). It is
worth noticing that in general the joint PDF depends on the spatial position, as in
sections 2.2 and 2.3. This spatial dependence is here homogenized by the ensemble
average as outlined in Scher and Lax (1973a) and Scher and Lax (1973b). To illus-
trate this approach, we adopt the method reported in Appendix B of the paper by
Scher and Lax (1973a) dealing with pure diffusion in a medium characterized by
spatially distributed particle traps (see also, Bouchaud and Georges, 1990; Dentz
et al, 2016). Our starting point is equation (19) for a medium that is characterized
by constant and isotropic dispersion properties, but a spatially variable porosity
or retardation coefficient φi, which quantifies the strength of the particle trap.
Under these conditions, the coefficients bij in (20) simplify into

b =
D

ξ2
. (26)

Therefore, the CTRW for this transport system is characterized by the joint tran-
sition pdf

ψij(t) =
1

2d
ψj(t), ψj(t) = exp(−t/τj)/τj , τj = φjτD, (27)

where τD = ξ2/D, and d is the dimension of space. The CTRW equations (12)
now rewrite as

Pi(t) =

t∫
0

dt′Ri(t
′)

∞∫
t−t′

dt′′ψi(t
′′) (28a)

Ri(t) = P0(t)δ(t) +
∑
[ij]

t∫
0

dt′
1

2d
ψj(t− t′)Rj(t′). (28b)
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The average transport behavior can be obtained by way of an ensemble averaging
over the disorder, with the meaning here of averaging the distribution of φi. To this
end, we assume that the φi at different sites i and j are uncorrelated. We remind
that Ri(t) represents the probability density that a particle just arrive at site i at
time t. This probability conceals information on all the other sites visited before.
We also remind that the average number of new sites visited for an isotropic lattice
random walk in d > 3 spatial dimensions increases with the number of random
walk steps (Bouchaud and Georges, 1990). This means that Ri(t) and ψi(t) can
be assumed to be statistically independent because it is unlikely that a particle
returns to the same site. Consequently, for d = 3 dimensions we can perform the
ensemble average through the integration of (28) over the distribution pφ(φ) of
point values of φi, which renders

P i(t) =

t∫
0

dt′Ri(t
′)

∞∫
t−t′

dt′′ψ(t′′) (29a)

Ri(t) = P0(t)δ(t) +
∑
[ij]

t∫
0

dt′
1

2d
ψ(t− t′)Rj(t′), (29b)

where the pdf of transition times integrates the disorder distributions as

ψ(t) =

∞∫
0

dφpφ(φ)
exp

(
− t
φτD

)
φτD

. (30)

It is noteworthy that such an average transport description holds under the con-
dition that the disorders experienced by the particle at subsequent steps are inde-
pendent.

In this spirit, CTRW has been applied to advective and dispersive transport in
heterogeneous media. For advection-dominated transport, the transition time τ is
related to the advection travel time over a characteristic length `, of the same order
of magnitude as the correlation distance of the particle velocity along a streamline,
i.e.,

τ =
`

v
, (31)

where v is the particle velocity. The spatial correlation properties of Lagrangian
particle velocities along streamlines, and the representation of transport by CTRW
have been studied for pore and Darcy scale transport (Le Borgne et al, 2008b,a;
Kang et al, 2011; de Anna et al, 2013; Kang et al, 2014). The relation between the
spatial distribution of hydraulic conductivity and transition times has been studied
in Edery et al (2014). The CTRW as an average transport approach has been em-
ployed in the interpretation and prediction of diverse anomalous and non-Fickian
behaviors observed in geological media (Berkowitz et al, 2006). In the following, we
briefly summarize the behaviors of breakthrough curves and spatial concentration
moments that are obtained within the CTRW framework for a transition time pdf
that decays algebraically as ψ(t) ∝ t−1−β with 0 < β < 2.
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2.4.1 Breakthrough Curves

Hydrodynamic transport in natural formations is frequently characterized by break-
through curves that here depict the first passage time pdfs, or solute fluxes. Both
forms of breakthroughs are quite similar in the case of advection-dominated trans-
port. The first passage time t(x1) at a control plane located at x1 can be formulated
in terms of particle trajectories as

t(x1) = inf[t|x(t) ≥ x1]. (32)

The pdf of first passage times can then be written as

f(t, x1) = 〈δ[t− t(x1)]〉. (33)

For an instantaneous particle injection into an infinite or semi-infinite domain, it
has been found (Berkowitz et al, 2006) that f(t, x1) scales as the transition time
pdf,

f(t, x1) ∝ t−1−β . (34)

2.4.2 Spatial Concentration Moments

Other observables characterizing the global plume behavior can be found in the

first and second centered moments of the solute spatial distribution. The first m
(1)
i

and second m
(2)
ij spatial moments of P (x, t) are defined as

m
(1)
i (t) ≡

∫
ddxxiP (x, t) m

(2)
ij (t) ≡

∫
ddxxixjP (x, t). (35)

In terms of the particle trajectories, these moments are given by m
(1)
i (t) = 〈xi(t)〉

and m
(2)
ij (t) = 〈xi(t)xj(t)〉. The second centered moments are a measure of the

global plume width, and are defined by

κij(t) = m
(2)
ij (t)−m(1)

i (t)m
(1)
j (t). (36)

With concern to the behavior in time of the spatial moments, we distinguish the
range of β values between 0 and 1 from the range between 1 and 2. For 0 < β < 1
it has been found that (Berkowitz et al, 2006)

m1(t) ∝ tβ , κ11(t) ∝ t2β , κ22(t) ∝ tβ . (37)

In the range 1 < β < 2 the moments behave as

m1(t) ∝ t, κ11(t) ∝ t3−β , κ22(t) ∝ t. (38)

These behaviors are valid in their asymptotic trend if there exist time regimes for
which the transition time pdf shows the power-law behavior ψ(t) ∝ t−1−β for 0 <
β < 2. For β > 2 the breakthrough and dispersion behaviors are asymptotically
Fickian. One could also expect that there exists a cut-off scale, seemingly linked
to the largest velocity scale, beyond which the transition time pdf drops faster
than a power-law. Such situations and the transitions from anomalous to normal
transport behaviors have been investigated in Dentz et al (2004).
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3 Numerical Random Walk Particle Tracking Methods

3.1 Classical Random Walks

The simplest random particle tracking algorithm to solve the ADE (5) is obtained
by time discretization of the Langevin equation (9) relying on the Ito convention
of the stochastic integral of dx/dt,

x(t+∆t) = x(t) +
u[x(t)]

φ[x(t)]
∆t+

∇ ·D[x(t)]

φ[x(t)]
∆t+

√
2D[x(t)]∆t

φ[x(t)]
· Z(t), (39)

which yields an Euler scheme of the particle displacement. In the preceding equa-
tion, the time step is supposed to be discretized in increments dt. In the basic
version, time steps are assumed to be constant. The Z(t) are independent ran-
dom vectors of Gaussian components with zero mean, 〈Z(t)〉 = 0 and covariance
〈Zi(t)Zj(t)〉 = δij . In practice, the random noise Z(t) can be replaced by any
random vector with zero mean and unit variance. In the heterogeneous case, in-
cluding media characterized by discontinuous properties, this classical formulation
of RW has several drawbacks. Intuitively, one can anticipate spurious phenomena
because of the Dirac delta function that appears in the evaluation of the gradient
of discontinuous diffusivity. The first methods were based on reflection principles
approximating the complete solution to the discontinuous interface, which can be
obtained through the so-called method of images (Uffink, 1985; Semra et al, 1993;
Kinzelbach and Uffink, 1991; Kinzelbach, 1988; Zimmermann et al, 2001; Hoteit
et al, 2002a,b; Bechtold et al, 2011). When crossing the interface, random walk-
ers are either reflected or transmitted. Starting from the higher dispersion side,
random walkers are more likely reflected than dispersed, thus preventing from spu-
rious accumulation of particles in the lower dispersive side. Thorough investigation
of these approximations have been performed both theoretically by defining con-
vergence conditions that should respect the proposed diffusive processes (LaBolle
et al, 1998) and numerically by comparing them on different benchmarks (Salamon
et al, 2006a; Lejay and Pichot, ????). Numerical studies point out the complexity
of their implementation especially when coupling them with advanced discretiza-
tion scheme for transport. Another drawback is that the basic algorithm leads
to inefficient small spatial displacements in very low diffusion coefficient zones.
The particles remain trapped in low diffusion zones, increasing the effective com-
putational cost which is proportional to the number of time iterations. In the
heterogeneous case, including media characterized by discontinuous properties,
this classical formulation of RW has several drawbacks. Intuitively, one can an-
ticipate spurious phenomena because of the Dirac delta function that appears in
the evaluation of the gradient of discontinuous diffusivity. In the classical form of
RW, accounting for these diffusivity discontinuities requires the implementation
of quite complex ”reflection” rules of the particles at the interface between two
media

3.2 Fully coupled advection-dispersion-diffusion equation

Introducing advective and dispersive terms in the same equation raises specific
numerical issues mostly linked to discontinuities in the dispersion gradient and to
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the coupling between the first-order advective term and the second-order diffusive-
dispersive term. Nonetheless, RW methods remain widely used because of their
good numerical properties, irrespective the rate of advection to diffusion-dispersion
and also because they are easily implemented. Time domain variants have dras-
tically improved the performances of RW methods, especially when dealing with
heterogeneous media. At the local scale, hydrodynamic dispersion is generally
modeled as a Fickian diffusion with the diffusion-dispersion coefficient D(x) of
equation (5) expressed as a tensor of components (Bear, 1973):

Dij = (αT |v|+ d)δij + (αL − αT )
vivj
|v| (40)

where d is the diffusion coefficient, αL and αT are the longitudinal and transverse
dispersivities, vi is the velocity in direction xi, |v| is the norm of the velocity,
and δij is the Kronecker symbol. Along the principal directions of dispersion, this
expression simplifies into

D =

d+ αL|v| 0 0
0 d+ αT |v| 0
0 0 d+ αT |v|

 (41)

where the first coordinate is taken along the direction given by the velocity and
the two other directions are in the plane normal to the velocity.

Both the advective and dispersive terms require the determination of the veloc-
ity v at any location in the modeled domain, while Eulerian methods only require
the knowledge of velocities at the scale of the mesh cell. When the velocity field
has been obtained numerically from the discretization of the flow equation over
a calculation grid, the velocity is expressed within each mesh cell by means of
appropriate methods. If the numerical scheme is based on flux conservative Fi-
nite Element methods (e.g., Mixed Finite Element, Mixed Hybrid Finite Element)
(Brezzi and Fortin, 1991; Hoteit et al, 2002a; Mosé et al, 1994; Pichot et al, 2010;
Roberts and Thomas, 1991), the velocity is directly derived from a combination
of the finite element basis functions (Hoteit et al, 2002b). With more standard
Finite Element approaches, conservative velocity schemes can still be derived us-
ing flux-conserving sub-cell subdivisions (Cordes and Kinzelbach, 1992, 1996). For
Finite Difference and Finite Volume schemes, velocities are most commonly cal-
culated within mesh cells via multi-linear interpolations (linear along the different
directions of the meshing) (Pollock, 1988; Maier and Bürger, 2013). In fact, only
the linear interpolation scheme is flux-conservative. In the specific cases handling
regular grids, the linear interpolation scheme can also be derived from the equiva-
lence between Finite Volume methods and Mixed Hybrid Finite Element schemes
(Chavent and Roberts, 1991). While mass-conservative transport schemes require
flux-conservative schemes, they do not impose any condition to the transverse ve-
locity across mesh faces that appear in general to be discontinuous. In association
with the multi-linear interpolation schemes, shear deformation tends to accumulate
at the edges of the mesh cell and is zero outside. This is a strong limitation when
studying solute mixing mechanisms with geometrical and process-based analysis
(Le Borgne et al, 2015). Alternative quadratic velocity interpolation schemes have
been proposed to ensure non-slip boundary conditions at impervious limits (Nunes
et al, 2015). Mass conservation conditions are no longer fulfilled locally but they
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are globally, over cell facets. This type of interpolation scheme becomes appro-
priate in the presence of numerous no-flow boundary conditions (e.g. modeling
transport at the pore scale).

While classical Eulerian schemes only need the expression of the dispersion
tensor D (Zheng and Bennett, 2002), random walk methods also require the dis-
persion gradient (equation (5)), and thus the velocity gradient. This is an impor-
tant specificity of RW methods that conditions the choice of both the numerical
schemes and the implementation methods. The main difficulty stems from the
discontinuity of the velocity gradient and hence of the dispersion gradient across
cells. We first underline that the effect of the discontinuity at the cell facet is not
systematically critical and is sometimes negligible compared with the other effects
of transport. This is the case of heterogeneous permeability fields as the classical
multi-Gaussian lognormal fields for which the transition between high and low
flow zones remains gradual enough (Salamon et al, 2006b). While not fully tested,
this point was hinted in previous studies (Tompson and Gelhar, 1990). In these
conditions of heterogeneity, random walkers are much more dispersed by the ve-
locity field and its gradient within the mesh cells than by discontinuities at the
cell interfaces.

TDRW methods are in essence more appealing than RW because their random
walkers stop at the interface before being transferred to neighboring cells (Bodin
et al, 2007; Delay and Bodin, 2001). The travel time to the interface is drawn from
exact or approximate analytical solutions to transport in homogeneous media. De-
veloped first in one-dimensional media for simulating solute transport in fracture
segments (Bodin et al, 2003; Painter and Cvetkovic, 2005), TDRW have been ex-
tended to multidimensional media (Bodin, 2015; Delay et al, 2002). When local
analytical solutions of the travel time distribution can be obtained, TDRW meth-
ods are highly efficient to couple the advective and diffusive/dispersive transport
processes. In the absence of local analytical solutions, alternative methods have
been developed as a mix between ”space-domain” random walk (classical random
walk) and time-domain random walk and trying to combine both the spatial and
temporal advantages. The constant displacement scheme consists in choosing a
spatial scale ∆x much smaller than the mesh scale l and deriving the time step
∆t from the spatial scale divided the local velocity v (Beaudoin et al, 2007; Wen
and Gomez-Hernandez, 1996; de Dreuzy et al, 2007): ∆t = ∆x/v. The classical
space-domain random walk method is then run once for this time step ∆t using
both advection and dispersion mechanisms. The control by the velocity at the lo-
cation of the random walker ensures that the mean displacement remains always
equal to ∆x. The characteristic number of steps taken within the mesh cell n can
be obviously fixed by choosing ∆x = l/n. The varying time step ∆t according
to the location in the domain maintains an even balance between accuracy and
efficiency over the whole modeled domain. This method combines part of the effi-
ciency of the TDRW method by fixing the mean displacement and the generality of
the classical Space-Domain RW. It also fundamentally respects the flow structure
within the mesh cell because the small displacements correctly follow the structure
of flow lines in each cell. In classical implementations, dispersion discontinuities
treated by the reflection method is again an issue. It could be solved by switching
to TDRW when the random walker comes close enough to one of the cell facets.
Close to cell corners, only the interface in the direction of the velocity could be
considered.
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3.3 Purely diffusive issues

In the case of purely diffusive issues as for Darcian fluid flow, we setu(x) = 0 in the
ADE and rewrite the equation for the fluid pressure p (that replaces the notation
c for this section) as:

φ(x)
∂p(x, t)

∂t
= ∇ · [D(x)∇p(x, t)] + S(x, t). (42)

In the hydrogeology practice, or in the oil and gas industry, D(x) is the diffusivity

given by D(x) = k(x)
µct

, k is the permeability, µ is the fluid viscosity and ct the

total compressibility of the medium (rock plus fluid). A source term in the form
S(x, t) representing either sources and sinks, or boundaries has been added in the
right hand side of the equation. Note that the equation can describe either tracer,
thermal or pressure diffusion in a porous medium of weak compressibility. The
linearity of this equation allows us to consider the cases where S(x, t) is in the
form δ(t)δ(x − x0). This means that we are interested in the Green’s function
of the previous equation. To go farther, a first step is to represent properly the
heterogeneous (or fractured) medium by means of a geometrical meshing. In a
second step, using an appropriate numerical scheme results in a discrete set of
equations to be solved. Finally, RW methods are used to solve the equations and
to glance at some information concealed in these equations.

3.3.1 Discretization of heterogeneous and fractured media

A discretization of the medium can be obtained via any available mesh builder
handling triangular or quadrangular elements (or the corresponding elements in the
three-dimensional case). In the case of bulk heterogeneities such as those mimicked
by geostatistical random fields, any sufficiently refined meshing compared with the
underlying correlation length will capture most of the heterogeneities (Fig. 1).

Fig. 1 An heterogeneous medium and the associated mesh

In the case of sharp heterogeneities enclosing discontinuities such as between
different layers, it is assumed that the meshing follows the discontinuities. For
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densely fractured media, building conform meshes (i.e., meshes not too much dis-
torted) closely following the discrete network of fractures becomes almost infeasible
(Fig. 2).

Fig. 2 A fractured unit cell and its triangulation

Fig. 3 Local zoom of the mesh

In a second step, the diffusion equation (42) can be discretized using Finite
Volume or Finite Element methods, yielding usually a linear differential set of
equations in the form of:

Viφi
∂pi(t)
∂t =

∑
j neighbor i

Tij(pj(t)− pi(t))

+
∫
grid block i S(x, t)dx.

(43)

Here, Vi denotes the volume of the i-th grid block. This step can result in additional
geometrical constraints for the meshing that are beyond the scope of this study.
Considering for illustration a Cartesian regular grid of spatial step ∆x, using a
Finite Volume approach, the discretized version of this equation in d dimensions
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for each grid block of size (∆x)d can be written as:

(∆x)dφi
∂pi(t)
∂t =

∑
j neighbor i

Tij(pj(t)− pi(t))

+
∫
grid block i S(x, t)dx.

(44)

The summation is carried out with respect to index j labeling the nearest neighbors
of the current grid block i.

It remains to define the so called transmissivities or inter block conductivi-
ties Tij between two adjacent grid cells i and j with respect to the underlying
heterogeneous map. A classical choice is the harmonic mean given by:

Tij = 2
DiDj(∆x)(d−2)

(Di +Dj)
(45)

where subscript i indicates that the values are evaluated at the center xi of
the i-th grid block. This provides a consistent discretization of (43) (McCarthy,
1990, 1991, 1993a,b). In the specific case of a fractured porous medium, mixing
hydraulic properties of fractures and matrix, a different option is usually taken by
assigning diffusion coefficient to meshes i in the form:

Di =

{
(∆x)(d−2)Dm, if xi ∈ Ωm,
(∆x)(d−2)Df , if xi ∈ Ωf .

}
(46)

Here, Ωf and Ωm represent the fracture and the matrix domains, respectively.
Using a sufficiently refined grid, allows relying upon standard Euler time discretiza-
tion and associated solvers to produce accurate solutions of the discretized version
of (43).

It is noteworthy that many discretization methods yield linear systems in the
form of (43). Combining various mesh generators with compatible discretization
schemes for the diffusion operator will always render the same general form of the
discretized equations, the latter simply changing by the stencil of neighbor cells
involved in each equation and the formulas of inter-block transmissivities (45). A
rather complete analysis of this last issue can be found in Romeu and Noetinger
(1995). It was observed that convergence to the solution of the continuous equa-
tions can be greatly accelerated according to the meshing and discrete scheme
used. More recently, Wang et al (2014) and Qu et al (2014) detailed the local
flow field close to adjacent corners of neighbor grid cells. These authors were able
to justify the general power law averaging as the rule for generating inter-block
coefficients by using the so called ”finite analytic approach”. It must be kept in
mind that that with extreme contrasts of diffusion properties between cells, the
standard choice of harmonic means (45) results in severe underestimations of the
large scale diffusion, the harmonic mean being mainly controlled by the smallest
value. In the case of percolation lattices involving highly contrasted properties, the
percolation threshold might be artificially shifted. In the sequel, we will no longer
come back to the choice of inter-block parameters even though it is an important
feature for solving flow and transport equations.



18 Benoit Noetinger et al.

3.4 Random walk methods for dual-porosity models

Fractured media are generally made of highly conductive fractures present at sev-
eral scales and embedded in a low permeability matrix. This high contrast of
properties led to the introduction of dual-porosity models where matrix and frac-
tures are treated separately and coupled through an exchange term. These models
have been used to simulate various processes, such as fluid flow (Barenblatt and
Zheltov, 1960; Warren and Root, 1963), solute transport (Dershowitz and Miller,
1995; Cvetkovic et al, 2004), and electric current flow (Roubinet and Irving, 2014).
They can also be associated with Dual-porosity models can also rely upon Discrete
Fracture Networks (DFN) approaches to consider the geometrical complexity of
realistic fracture networks (Cacas et al, 1990; Delorme et al, 2013a). In the purely
diffusive case, these dual-porosity models can be ruled by the following equation:∫ ∞

0
dτ [φfVfδ(t−τ)+φmVmf(t−τ)]

∂p(x, τ)

∂τ
= ∇· [D(x)∇p(x, t)]+S(x, t). (47)

Here, Vf and Vm denote the volume fractions of the fractures and the matrix,
respectively, and φf and φm are the associated porosity.

The Laplace transform of eq (47) yields:

[φfVf + φmVmf(s)][s p(x, s)− p(x, t = 0)] = ∇ · [D(x)∇p(x, s)] + S(x, s). (48)

In some dual-porosity models, RW methods have been used for: (i) up-scaling the
transfer properties required to describe averaged fracture-matrix interactions, (ii)
directly solving the considered flow or/and transport problem, and (iii) evaluating
flow or/and transport effective properties. In this section, we describe a few of
these applications distinguishing the dual-porosity models based on a continuous
representation of the fractures (section 3.4.1) from models based on an explicit
representation of the DFN (section 3.4.2).

3.4.1 Up-scaling DFN to continuum dual-porosity models

Solving fluid flow in fractured porous media can be carried out by resorting to a
continuous dual-porosity model, such as the one described in Appendix B. The
model description handled in the present study lets appear transfer functions and
coefficients between fracture and matrix continua, denoted f(t) and λ, respectively.
Although these functions and coefficients can be determined analytically for simple
cases (expressions (70)-(71)), a numerical evaluation is required for the complex
cases. In this context, Noetinger and Estebenet (2000), Noetinger et al (2001a,b)
and Landereau et al (2001) applied directly a TDRW method (named CTRW
in their papers) to determine these transfer parameters. The key observation of
Noetinger and Estebenet (2000) and Noetinger et al (2001a) is that f(t) can be
interpreted as the probability density function (pdf) of the first exit time of a
particle initially launched from a random location in the matrix, then undergoing
a random motion in the matrix and finally exiting toward the fracture domain
at the matrix boundary. This function f(t) might also be identified as the local
memory introduced for general processes hosting mobile-immobile physical and
chemical interactions (Carrera et al, 1998; Willmann et al, 2008). It can be verified
explicitely on the few analytical solutions of f(s) (Appendix B) that the transfer
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function can be developed as a power serie of s (Noetinger and Estebenet, 2000;
Noetinger et al, 2001a):

f(s) = 1− φmVm
λ

s+ .... (49)

Recasting the equation in the real domain yields 〈t〉 =
∫+∞
0 tf(t)dt = φmVm

λ .
Therefore, the mean residence time of random walkers in the matrix is directly
related to the transfer coefficient introduced in dual-porosity models. It can be
shown mathematically that the λ coefficient arising from this definition exactly
coincides with the coefficient obtained from large scale averaging or homogeniza-
tion theory (Noetinger et al, 2001b). These considerations result in the following
algorithm that provides a full determination of the exchange function f(t) as well
as the parameter λ. Without loss of generality, we assume φm = 1. It is assumed
that the matrix was meshed and that a finite volume scheme led to a discretized
set of equations having the form of 43. We introduce the notations: Bi =

∑
[ij] Tij

and wij =
Tij

Bi
The following algorithm can be easily implemented:

1. Choose the number N of independent particles.
2. To start the i-th particle, choose one matrix node ji with a probability pro-

portional to the volume of the associated grid block, k=1.
3. While the particle has not left the matrix, at step k of the algorithm, move the

particle from site “i” to its nearest neighbor site “j”, with a probability equal
to wij

4. Update the time counter with the relation:

tk = tk−1 −
Vi
Bi
Log(rand).

Here, rand stands for a random number picked from a uniform distribution
over [0, 1].

5. If at iteration k the particle enters a grid block belonging to the fracture region
at iteration k, store the exit time ti = tk of the current particle i and launch
the i+1 th particle.

6. Store the N independent exit times t(1),..., t(N).
7. End.

It is then easy to obtain the histogram of the distribution yielding f(t). The
quantity λ can be estimated by means of the relation

λ =
Vm
〈tmf 〉

' Vm
1
N

∑N
i=1 t

(i)
.

The above algorithm, which returns a direct determination of the complete ex-
change function, is very fast and efficient because there is no need of iterations
(particle motions) in the fractures. It was successfully tested on simple geometries
consisting of for stratified media, or spherical matrix blocks and provided good
comparison with the corresponding analytical determinations of both f(t) and λ
(Noetinger and Estebenet, 2000; Noetinger et al, 2001b,a). In addition in these
papers, it was shown that this exchange function f(t) is closely related to the time
autocorrelation function of If (t). Here, the fracture indicator function is defined
as If (t) = 1 if the particle in the fracture at time t, 0 else. This corresponds to
the curve labelled by FMF in (Fig. 4).
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Several tests on simple DFN’s with some randomness in the fracture character-
istics were also carried out (Fig. 4). The residence time distribution f(t) obtained
by TDRW compared very well with the corresponding finite volume solutions.
These solutions were obtained by solving the relaxation problem given in the ap-
pendix 67 that is closely related to determination of the fisrt exit time distribution
f(t).

Fig. 4 Left: a fractured medium. Right: transfer function computed by TDRW and by finite
differences.

It remains to characterize transfer functions for complex DFN. Finding generic
analytical forms generalizing the known analytical forms given in appendix B
(69,70, 71) and able to account for very wide distributions of matrix block size
remains to be done. At short times, corresponding to large Laplace parameter s,
the function f(t) is sensitive to the ratio of the fracture surface to total volume.
At larger times, f(t) samples the whole block size distribution, making that some
fractal and thus ”anomalous” power law behavior may be anticipated. This could
lead in the real time domain to anomalous transfer kernels equivalent to fractional
derivatives (Néel et al, 2011, 2014). There is no doubt that the TDRW method
depicted above would be useful to feed the investigations with numerical results.
As an illustration the method was implemented to estimate some properties of
fractured medium constructed with percolation lattices. Fig. 5 shows a realization
of a percolation lattice with a proportion p = 0.57 of active fractures. In Fig. 6, we
plotted the dependence on p− pc of the mean residence time in the matrix (with
diffusivity equal to one) with respect to the proportion of active fractures. The
flexibility of the TDRW approach allows to compute several mean residence times
of interest, that depend on the fracture sub-network that is retained to decide to
stop the particle’s motion in the algorithm above (the reader can remark that any
arbitrary stopping criterion can be imposed in the algorithm above). This freedom
was used to study the residence time distribution computed once retaining the
whole fracture network (the basic algorithm), or only the connected cluster, or
only the resulting backbone, neglecting dead ends. In order to account for finite
clusters, particles attaining an isolated cluster, are instantaneously released at
a random location in a matrix mesh bounding this cluster (so called ”speed on
isolated clusters”) and may continue their diffusive motion before attaining the
sub-network of interest at which the exit time ti is stored. Then average residence
times can be evaluated depending on the proportion p of active fractures.
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150 x 150, p = 0.57

Fig. 5 A bond percolation network at proportion p = 0.57 of active fractures, red = isolated
clusters, black = backbone, green= dead-ends

A set different curves corresponding to different mean residence times 〈t〉 is
obtained. Each curve depends on the fracture subnetwork that was kept, i.e., all the
fractures including non-relevant isolated clusters (red dots), or only the percolation
backbone (black triangles) corresponding to the extreme cases. Intermediate curves
correspond to different treatments of the remaining finite clusters. Notably, keeping
the whole set of fractures (red dots) in Fig. 6 does not lead to any critical divergence
of the mean residence time close to pc (pc = 0.5 in the case of a 2D bond square
lattice). Further studies should be carried out to obtain a better characterization
of the associated critical exponents. This result illustrates that even starting from
the same DFN, exchange coefficients may be process dependent, depending on the
role of finite clusters or dead-ends in the transport process under consideration.

It can be mentioned that random walk methods have also been used in contin-
uous dual-porosity models to directly model transport in fractured porous media
(Liu et al, 2000; Pan and Bodvarsson, 2002). In these studies, advection-dispersion
equations were considered in both the fracture and matrix continua, and the prob-
ability of transfer between these two continua was defined analytically.

3.4.2 Random walk simulations on discrete fracture networks accounting for the
matrix

In the preceding section, it was shown that the transfer function f(t) could be
determined efficiently using TDRW. Once f(t) is found applications can be envi-
sioned by using the continuous double porosity equations (60) or the alternative
form (63). Another option is to keep the details of the DFN topology explicitly,
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Fig. 6 Exchange coefficient computed for the percolation network as a function of p− pc
. The indicated numbers correspond to the estimated slopes of the apparent scaling laws in
this Log Log representation.

without keeping an expensive explicit meshing of the fractures. In two dimensions,
the DFN is represented by means of a resistor/capacitor network with pressure
unknowns located only at the intersections of the fractures. This class of models
are called pipe network models. Chang and Yortsos (1990) and Acuna and Yort-
sos (1995) carried out simulations of pressure transient (well tests) in this way
using two-dimensional DFN close to the percolation threshold. The components
of flow between matrix and fractures were neglected, corresponding to studying
an impervious matrix. A three-dimensional generalization of this pipe network ap-
proach including these components was proposed by Noetinger and Jarrige (2012)
and Noetinger (2015). The main difficulty is that in 3 d, intersections between
fractures are segments, so describing pressure profiles at these intersections in-
volves many degrees of freedom. By introducing the set of fracture intersections
labeled by j, and denoting pj as the average pressure on the j-th intersection, it is
possible to derive the following set of equations that corresponds to a lowest order
approximation:

∀i = 1, N∩,
∑
j∈J(i)

K11
ij (Vf + Vmf(s))[spj(s)− pj(t = 0)] =

∑
j∈J(i)

VfT
11
ij pj(s).(50)

To simplify notations, both matrix and fracture porosity are here equal to unity.
The quantities K11

ij and T 11
ij depend explicitly on the shape of the fractures and

can be determined with fast algorithms (Khvoenkova and Delorme, 2011; Delorme



Random walk methods for hydrodynamic transport from pore to reservoir scale 23

et al, 2013b). One can note that the number of unknowns corresponds to the num-
ber of intersections between fractures, so the method allows treating large DFN’s.
If a better accuracy is needed, one can increase the order of the approximation, but
the number of unknown remains still Noetinger and Jarrige (2012) and Noetinger
(2015). The set of equations 50 has the same form that a discrete form of the set
of equations (63) that can be solved using TDRW with trapping as introduced
by Dentz et al (2012), equations (26), (29), (30) and (31) of their contribution.
Identification is obtained by stating

(Vf + Vmf(s)) =
1

µ(x, s)
(51)

where µ(x, s) is the local memory function introduced in Dentz et al (2012). To
summarize, one can state that TDRW is useful to both:

– determine f(t) using random walkers in the matrix only, the DFN acting as a
boundary

– once f(t) properly known, solving equations (50) to up-scale the DFN in or-
der to parameterize a continuous double porosity model useful for engineering
applications.

TDRW methods associated with an explicit representation of the DFN have
also been used to model transport processes in fractured media Geiger et al (2010).
Some models only consider advective displacement in the fractures with the aim
of studying hydrodynamic dispersion in two-dimensional heterogeneous percola-
tion networks (Rivard and Delay, 2004). In these studies, binary and log-normally
distributed hydraulic conductivity fields are considered, and the impact of this
heterogeneity on the longitudinal dispersion coefficient is analyzed at the perco-
lation threshold. In other models, advection-diffusion mechanisms in the fractures
and pure diffusion in the matrix are considered, with sometimes a mesh-free rep-
resentation of the matrix. This dual-porosity formulation reduces the numerical
cost and the algorithm complexity related to the meshing step of each simulation.
With these techniques, particles only move in the fractures and their diffusion into
the surrounding matrix is considered via an additional retardation time (Cvetkovic
et al, 2004; Dershowitz and Miller, 1995; Roubinet et al, 2010). When derived from
analytical solutions, this retardation time relies on specfic physical and geometrical
assumptions. For example, Dershowitz and Miller (1995) consider a pure-diffusion
equation in matrix blocks of regular shape. In Cvetkovic et al (2004), retention
models based on analytical solutions of fracture-matrix systems (e.g., Tang et al
(1981)) are employed under the assumption that the matrix surrounding each frac-
ture is infinite yielding no limitation of matrix diffusion by nearby fractures. To
overcome this restrictive assumption, Roubinet et al (2010) add the possibility for
each particle to transfer from one fracture to another by diffusion through the
matrix blocks. The method is applicable to heterogeneous fractured porous media
without constraint on the matrix block geometry or network density.

The numerical methods previously described have been used to evaluate up-
scaled transport properties and to analyze the impact of structural heterogeneity
at the large-scale on the behavior of transport in fractured media. In Cvetkovic
et al (2004), Painter and Cvetkovic (2005), and Painter et al (2008), up-scaled
transport properties are first evaluated over small discrete fracture networks, and
then used to perform large-scale simulations. This efficient two-step method has
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been applied to the Äspö Hard Rock Laboratory in Sweden (Cvetkovic et al, 2004;
Painter and Cvetkovic, 2005) and has been extended by introducing first-order
(kinetics) solute transformations (Painter et al, 2008). Other RW methods associ-
ated with a DFN representation have helped to understand the impact of the DFN
heterogeneity on large-scale effective transport properties. More precisely, Liu et al
(2007) aimed their study at the dependence with the space scale of the effective
matrix diffusion coefficient deduced from field tracer experiments. This scale effect
has been observed in numerous characterization studies of fractured rocks, and the
numerical simulations conducted in Liu et al (2007) showed that this effect was
related to the DFN heterogeneity. The impact of DFN heterogeneity has also been
studied in Roubinet et al (2013) by way of numerical transport simulations con-
ducted over synthetic fracture networks with large ranges of hydraulic properties
and wide distributions of matrix block size.

3.5 Measuring Mixing Properties From Random Walk Simulations

Mixing is one of the key mechanisms of interest when studying transport and re-
action phenomena in heterogeneous porous and fractured media (Kitanidis, 1994;
Dentz et al, 2011). While dispersion measures the spatial extent of conveyed
plumes, mixing quantifies the distribution of concentration of dissolved chemi-
cal species in the fluid phase (Le Borgne et al, 2015). Therefore, mixing measures
both the dilution of plume in the resident fluid and the probability of dissolved re-
active species to meet and react (de Simoni et al, 2005). Different mixing measures
have been proposed including the dilution index (Kitanidis, 1994), the intensity of
segregation (Danckwerts, 1952) and the scalar dissipation rate (Ottino, 1989). The
latter measures the rate at which concentration gradients are dissipated under the
combined action of advection and diffusion. It can be directly translated into an
effective reaction rate when fast reactions are considered (Le Borgne et al, 2010;
de Simoni et al, 2005).

Numerical particle tracking methods are particularly useful to investigate dis-
persion and mixing as they avoid numerical dispersion. Nevertheless, handling a
finite set of particles is typically faced with significant noise and imprecisions in
the calculation of concentration gradients, whose reduction requires a large density
of particles. This is an issue when estimating scalar dissipation rates that depend
on the concentration gradients according to

χ(t) =

∫
dxD [∇c]2 , (52)

where D is the local diffusion coefficient and c is the local concentration. This local
value of D [∇c]2 is also useful as the interpretation of the sensistivity of large scale
parameters to local heterogeneities (Noetinger, 2013). This measures of mixing is
significantly affected by errors in concentration gradients since the latter appear
squared in the measure. However, for finite time injection conditions, i.e. when no
additional solute is injected in the domain when scalar dissipation is measured, it
can be shown that the scalar dissipation rate is directly linked to the derivative
with respect to time of the squared concentration as,

χ(t) = −1

2

d

dt

∫
dx c2. (53)
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The expression shows that the scalar dissipation rate is a measure of the decay of
concentration variance as the transported plume is diluted in the resident fluid.
As illustrated in Fig. 7 and discussed in Le Borgne et al (2010), it comes out that
expression (53) is far less sensitive to numerical noise than the classical expression
of the scalar dissipation rate (equation (52)) because it does not require evaluating
concentration gradients. With measure based on (53), mixing can be evaluated
efficiently from random walk particle tracking simulation in heterogeneous media
(Le Borgne et al, 2010). As illustrated in Fig. 7d, heterogeneity in permeability is
found to induce temporal scaling effects of the mixing rates that distinguish from
those expected for homogeneous media. This phenomenon can be explained by
an enhancement of diffusion due to the stretching of the solute plume by velocity
gradients (Le Borgne et al, 2013).

a) Numerical simulation of plume advection and di�usion 

    with RW particle tracking in homgeneous media
b) Temporal evolution of the scalar dissipation rate in homogeneous media
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c) Numerical simulation of plume advection and di�usion 

    with RW particle tracking in heterogeneous media

d) Temporal evolution of the scalar dissipation rate in heterogeneous media
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Fig. 7 a. Numerical simulation of the transport of a line of tracer in a homogeneous media
under advection and diffusion with particle tracking. τD is the characteristic diffusion time
over a pixel of size ∆x, τD = ∆2

x/D b. Estimation of the scalar dissipation rate from the local
concentration gradients (52) and from the local concentration squared M(t) =

∫
dxc2 (53).

The latter compared much better than the former to the analytical solution for a homoge-

neous media χ1D(t) =
C2

0Lyt
−3/2

8
√
2πD

. c. Numerical simulation of the transport of a line of tracer

in a heterogeneous media under advection and diffusion with particle tracking. d. Temporal
evolution of scalar dissipation rates estimated for different permeability field variances. Het-
erogeneity in permeability affects the temporal scaling of the scalar dissipation rate and thus
the global mixing rate. Adapted from Le Borgne et al (2010).
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4 Application from pore to field scale

4.1 Effective flow and transport parameters

A direct application of RW methods for diffusion problem is the determination
of effective conductivity (or diffusivity) of heterogeneous media, by means of the
Einstein relation bridging the mean square displacement to the effective diffusion
coefficient of the handled equation (Einstein, 1956):

R2(t) = 〈(x(t)− x(t = 0))2〉 = 2dD(t)t, (54)

where d is the dimensionality of the system and D(t) denotes the scaling coefficient
of the diffusion equation under consideration (diffusion, diffusivity or conductiv-
ity). In the case of bulk heterogeneous media, it is possible to show that the
convergence of D(t) to its asymptotic value Deff is reached once R2(t) � lc,
where lc is the permeability correlation length (Noetinger and Gautier, 1998).
Physical considerations show that at short times, R2(t) ∼ D̄t where D̄ denotes
the average diffusivity, because the diffusive particles sample local homogeneous
regions of size lc. The cross-over between both regimes can provide information
on the REV size. This technique has also been often used to analyze binary me-
dia, for instance that obtained from X-ray tomographic imaging (e.g. Gouze and
Luquot (2011)). The effective diffusion and tortuosity can be obtained from the
asymptotic regime but but the surface to volume ratio is also obtained from the
transient regime (Sen et al, 1994; Sen, 2003, 2004). RW calculations inferring the
effective properties at the sample scale of binary images of porous media can be
efficiently performed using a TDRW approach. The regular lattice over which par-
ticles are moved by jumps of prescribed sizes is mapped onto the image voxels.
Calculation of Deff from binarized media can be performed by solving a boundary
value problem mimicking a diffusion experiment where the particles are initially
located at one boundary of the medium and the first passage time monitored at
the opposite boundary. A more efficient method is to distribute randomly the par-
ticle in the pore space (initial value problem) and apply directly (54) to measure
the evolution of D(t) in time t and obtain Deff from the asymptotic behavior
of D(t). Practically, it may become difficult to observe the asymptotic behavior
of D(t) because the sample does not enclose heterogeneity of finite scale and/or
because calculations were stopped too early. For example, particles might spend a
huge time to reach tiny connected paths in binary media close to the percolation
threshold, making that anomalous diffusion occurs (Sahimi, 2011; Redner, 1989).

RW methods have also been employed to calculate the effective dispersion of
binarized porous media by solving (5) in which a steady-state velocity field is
obtained solving the Navier-Stokes equations using a classical Finite Volume ap-
proach. This approach was initiated by Salles et al (1993). The geometry of the
simulations as well as the boundary and initial conditions are generally chosen to
mimic laboratory tracer tests experiments through core samples. The settings are
usually of ”permeameter” type with a passive tracer injected at one side of the core
and the tracer breakthrough curve (BTC) monitored at the opposite side. A pulse
injection is usually mimicked in the numerical simulation instead of continuous
injections of actual experiments because the pulse fasten computations (less par-
ticles in the system). In general, the size of the domain is limited by the computa-
tional effort needed to solve the Navier-Stokes equations; the current pattern being
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Fig. 8 Left: three-dimensional visualization of the pore network (blue) and the connected
microporosity (yellow) for a sub-volume of 1203 voxels of the (0.8 mm3) Berea sandstone
sample studied by Gjetvaj et al (2015). Right: BTCs for pore-scale mobile-immobile transport
through the Berea sample for different values of the Peclet number computed by TDRW.

three dimensional lattices of 3003 to 10003 nodes that correspond to millimeter-
sized rock samples. Nevertheless, this approach relying upon TDRW calculations
remains appealing regarding the studies on the relationships between flow field
properties and solute dispersion evidenced by markedly non-Fickian breakthrough
curves. Bijeljic et al (2013a,b) studied the dispersion in carbonate and sandstone
rock samples using binarized images of X-ray tomography. They simulated trans-
port in moving particles by advection along streamlines (previously computed
from the flow field) and using a classical RW with jumps of constant time step
to simulate molecular diffusion. The authors characterized the heterogeneity of
the porous medium as the distribution of pore throat size and showed that an
asymptotic diffusion was reached after the particles had visited many throats.
Conversely, Gjetvaj et al (2015) investigated the origin of non-Fickian transport
using the Berea sandstone containing a small fraction of micro-porous cement with
pore size below the resolution of X-ray micro-tomography (Fig. 8). The authors
showed that the micro-porous phase was fairly well depicted as an immobile dif-
fusive domain while the solute transport in the macro-porosity taken as a mobile
domain was solved as a combination of Navier-Stokes and diffusion equations. So-
lute motion in the modeled sample was simulated by TDRW and showed that
breakthrough curves exhibited non-Fickian diffusion processes stemming from the
heterogeneity of the flow field and the diffusion into the micro-porosity. Finally,
the authors proposed an up-scaled one-dimensional model calculating transition
times of particles conditioned by (time)truncated power law distributions repre-
senting the effects of both the flow field heterogeneity and trapping plus diffusion
mechanisms in the micro-porosity.

McCarthy (1990, 1991, 1993a,b) was the first author carrying out TDRW cal-
culations for the purpose of up-scaling hydraulic-conductivities. Latter, random
walk methods were also used to up-scale the transport properties of heterogeneous
porous media at diverse scales. For example, at the large scale, heterogeneity of
permeability has been represented by a lognormal exponentially correlated distri-
bution and the flow equation was discretized and solved with a Finite Difference
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scheme (de Dreuzy et al, 2007; Beaudoin et al, 2010; Beaudoin and de Dreuzy,
2013). Then, the effective longitudinal and transversal dispersions were inferred
by way of two-dimensional (Beaudoin et al, 2010; de Dreuzy et al, 2007) and
three-dimensional (Beaudoin and de Dreuzy, 2013) TDRW calculations. An addi-
tional advantage of TDRW methods for advective-dispersive transport in fractured
networks is their capability to separate the transport within the fractures from
mechanisms at fracture intersections. Different assumptions can be applied at the
fracture intersections from complete mixing to streamline routing (Berkowitz et al,
1994; Kosakowski and Berkowitz, 1999; Park et al, 2003), resulting in markedly
different solute mixing behaviors at the network scale (Bruderer and Bernabé,
2001; de Dreuzy et al, 2001; Park et al, 2001).

4.2 Interpretation of solute transport experiments

At the laboratory scale, CTRW has been used to interpret transport experiments
set up as either saturated and unsaturated flow cells conveying sorbing and non-
sorbing solutes (Hatano and Hatano, 1998; Berkowitz et al, 2000; Bromly and Hinz,
2004; Cortis and Berkowitz, 2004), or a single fracture in granitic core samples
percolated with non-sorbing tracers (Jimenez-Hornero et al, 2005).

Random Walk approaches have also been used to interpret non-Fickian diffu-
sion evidenced by in-situ field tracer test experiments. One of the most common
evidence of non-Fickian transport processes is the flat tailing of breakthrough
curves at long travel times that marks slow release of weak solute concentrations
(Fig. 9) (Haggerty et al, 2000; Berkowitz et al, 2006). This tailing behavior holds
information about the underlying processes triggering non-Fickian transport.

For example, matrix diffusion is known to impart strong tailings. As explained
in section 2, this problem can be modeled in adding to the Fickian ADE a sink-
source term accounting for mass transfers between the mobile domain and the
matrix (immobile domain) where diffusion dominates:

φ(x)
∂c(x, t)

∂t
−∇ · [D∇c(x, t) + vc(x, t)] + S(x, t) = 0 (55)

with

S(x, t) = φ′(x)
∂

∂t

∫
dt′M(x, t− t′) c(x, t′), (56)

where φ and φ′ denote the porosity in the mobile and immobile domain respectively
and M is the (eventually spatially distributed) memory function that contains all
the information on the geometry, the volume fraction of the immobile domain, and
its accessibility to tracer particles conveyed in the mobile domain.

Various formulation of this sink-source term S(x, t) were given to model the
multi-rate nature of mobile-immobile mass exchanges that even occur in homoge-
neous media with simple geometries (Haggerty and Gorelick, 1995; Carrera et al,
1998; Haggerty et al, 2000). For these simple configurations, the tailing of break-
through curves drops as c(t) ∼ t−1.5.

However, natural systems often display widespread clusters of matrix with
heterogeneous diffusion properties (see for example Fig. 8) from which diverse
tailing effects can be expected. Field observations report on power law distributions
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of large travel times of concentrations c(t) ∼ t−1−β , with power law exponents
spanning the wide range 0 < β < 2 (Haggerty et al, 2000). Another form of tailing
is the one displaying several slopes like the tracer tests by injection-withdrawal in
a single well (”push-pull” experiment) discussed in Gouze et al (2008a).

Gouze et al (2008b) computed the memory function M(t) associated with
solute transport simulated over X-ray micro-tomography images. As a first step,
the authors processed the images to delineate the interface between the mobile
immobile domains and to evaluate the diffusion coefficient distribution within the
immobile domain. In a second step, they computed the memory function by way
of a constant time step RW approach. The calculation was implemented as follows.
N random walkers uniformly distributed over the mobile-immobile interface are
released at the initial time (t=0). The diffusion equation is solved by a discretized
version of the Langevin equation (see (39)) and a specific procedure is applied
to determine the trajectory of the random walkers through the heterogeneous
pixelized matrix at each time increment. For t > 0, the mobile-immobile interface
is considered as an absorbing boundary, making that random walkers jumping
from the immobile domain toward the mobile domain are removed. The total
number of random walkers inside the immobile domain N ′(t) is recorded until the
last particle leaves the immobile domain. The authors showed that the memory
function M(t) could be obtained from the ratio N ′(t)/N . Finally, Gouze et al
(2008a) compared the memory function computed at the pore scale on X-ray
micro-tomography images of core samples to the memory function of field scale
tracer tests experiments in the limestone (Gouze et al, 2008a) where the core
samples had been imaged. The authors concluded that the non-Fickian dispersion
measured at the meter scale (field experiment) was fairly well explained by the
microscale diffusion processes in the rock matrix of cores.

Le Borgne and Gouze (2008) developed a specific model to explain the two-
slope tailing breakthrough curves discussed in Gouze et al (2008a) about push-
pull tracer tests in a single well. The op. cit. authors implemented a continuous
time random walk (CTRW) similar to that presented in section 2.2 and handling a
transition time distribution ψ(t) of dual-slope power law type. The best fit of tracer
test data was obtained with a transitional regime modeled by ψ(t) ∝ t−2 and the
asymptotic regime of a homogeneous dual-porosity model (i.e. ψ(t) ∝ t−1.5).

As alternative interpretations to the heterogeneous diffusion modeled by multi-
rate mass transfer or CTRW, diverse processes have been evoked to explain the
exponents of power-law travel time distributions, including heterogeneous advec-
tion in independent flow paths modeled by stochastic stream tube approaches
(Becker and Shapiro, 2003). Both multi-rate mass transfer and heterogeneous ad-
vection have been modeled by random walk approaches (Kang et al, 2015; Gjetvaj
et al, 2015).

In the CTRW framework, a power law tailing c(t) ∼ t−1−β can be modeled
by considering a transition time pdf in the form of ψ(t) ∼ t−1−β . The evolution
toward Fickian transport can be modeled by including a cut-off threshold in the
above power law (Dentz et al, 2004). While CTRW approaches generally describe
non-Fickian transport as series of uncorrelated particle motions of very large dura-
tions, stochastic stream tube approaches (Becker and Shapiro, 2003) assume that
particle velocities are constant along each streamline (particle jumps are therefore
correlated) but differ from a streamline to one another. Becker and Shapiro (2003)
have reported that this process led to the tailing of breakthrough curves obeying
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the relation c(t) ∼ t−2 under convergent tracer test conditions. Different exponents
were found for ”push-pull” test depending on the duration of the injection (push)
step. Kang et al (2015) showed that both non-Fickian transport and heteroge-
neous advection could be modeled by CTRW algorithm with correlated transition
times, whose correlation are varied from zero to represent non-Fickian transport,
to infinity to represent heterogeneous advection. It is not always straightforward
to decipher and separate the role of diffusive and advective processes as they can
lead to similar power law exponents of breakthrough tails. As shown by Kang
et al (2015), this uncertainty on process controlling ”anomalous” transport can
be resolved by combining tracer test experiments under different conditions, in-
cluding cross-borehole and push-pull tests. Cross borehole tests are more sensitive
to heterogeneous advection, while push pull tests are more sensitive to diffusive
mechanisms (Fig. 9).

1. illustration of convergent and push pull experiments in factured media 2. Breakthrough curves and random walk model

Fig. 9 1. Illustration of convergent and push pull tracer experiments in fractured media, from
Kang et al (2015), 2. Breakthrough curves measured at the Ploemeur site (H+ network) under
convergent and push pull conditions, and random walk modeling (dashed lines) with a Markov
Chain CTRW model, from Kang et al (2015).

4.3 Modeling of transport processes under ambient conditions

RW methods have also been used to improve our understanding of transport pro-
cesses under ambient conditions in natural environments. A lot of these studies
have been conducted on fractured rocks using TDRW methods within the frame-
work of discrete dual-porosity representations of the medium. Some of these mod-
els are described in section 3.4.2 and have been used, for example, to describe the
migration of radionuclides through fractured rocks at the Äspö Hard Rock Labo-
ratory in Sweden (Cvetkovic et al, 2004) and the Topopah Spring welded unit in
Yucca Mountain (Pan and Bodvarsson, 2002). Other applications target the frac-
tured Laxemar site in Sweden, which is part of the candidate repositories of spent
nuclear fuel (Cvetkovic and Frampton, 2012), and the Kamaiski experimental mine
site in Japan (Dershowitz and Miller, 1995).

Transport processes have also been modeled with RW methods in the context
of colloidal transport in a shear zone (Kosakowski, 2004), for identifying chemical
retention times in water catchments (Scher et al, 2002b), and for solute trans-
port in rivers (Boano et al, 2007). CTRW has also been used to interpret the
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observations made in a heterogeneous alluvial aquifer at the Macrodispersion Ex-
periment (MADE) site of the Columbus Air Force Base (Mississippi) (Berkowitz
and Scher, 1998) and in a fractured till located on the island of Funen (Denmark)
(Kosakowski et al, 2001). Finally, CTRW was also used for breakthrough curve
analysis of numerical experiments mimicking transport in fault zones (O’Brien
et al, 2003b,a).

4.4 Other applications

As explained in section 2.4, CTRW has been largely used as average transport
model; in fact the ensemble particle motions in many quenched disordered systems
obey a CTRW dynamic (Berkowitz et al, 2006). For this reason and motivated by
the results of single particle tracking for diffusion in heterogeneous media, CTRW
models has been used to study the question of ergodicity in complex media (Bel
and Barkai, 2005; He et al, 2008; Barkai et al, 2012; Metzler et al, 2014). More
recently, Dentz et al (2016) used TDRW to study the self-averaging properties
and ergodicity of subdiffusion in random media. As seen in section 2.3, TDRW
is equivalent to the discretized ADE and allows to distinguish between ensemble
particle motion (CTRW) and diffusive random motion in a single realization.

Todays, the limits of RW and TDRW methods are for some extent in the recon-
struction of concentration fields and their use for reactive transport simulations
involving non-linear chemical reactions. A few methods have been developed to
reconstruct the concentration field a posteriori from the random walkers while
keeping their independence [Fernandez-Garcia and Sanchez-Vila, 2011]. Others
decouple the advective and dispersive terms, simulate the advective term with a
particle tracking method and the dispersive term with Smoothed Particle Hydro-
dynamic (SPH) methods (Herrera et al, 2009, 2010; Herrera and Beckie, 2013).
With SPH, each particle is considered as an elementary volume of water contain-
ing solutes and exchanging mass with the neighboring volumes according to a
prescribed interpolation kernel, which is also eventually used to reconstruct the
concentration field. With this method, random walkers remain independent and
dispersive processes stem from the particle positions without feedback from the
concentration field to the particle displacements. Heterogeneous distributions of
particles with rarefaction in low flow zones may critically decrease the accuracy of
calculated concentrations. Increasing the particle number or performing particle
re-meshing are sometimes necessary and impact numerical performances or nu-
merical diffusion. To summarize, these methods are intermediary between RW, full
SPH, and Particle Strength Exchange (PSE) methods that introduce the influence
of concentration fields on the motion of particles and subsequent interdependence
of the particles (Beaudoin et al, 2002, 2003; Monaghan, 2005; Tartakovsky and
Meakin, 2006). Like SPH and PSE, several implementations of RW and TDRW
can be considered as mesh-free methods that can easily adapt their resolution to
local physical or chemical properties without extensive re-meshing efforts. When
chemistry mostly consists of fluid-rock interactions rather of reactions in solution,
particles can again be taken as water volumes or ”finite cells” with their embed-
ded solutes chemically interacting with the solid (Besnard et al, 2011; Sun, 1999,
2002). This role is especially well suited when dispersion is dominated by fluid-
rock interactions or mobile-immobile types of exchanges (Cirpka, 2005; Michalak
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and Kitanidis, 2000). More generally, appropriate combination of these Lagrange-
based methods could be welcomed to locally separate solute dispersion from solute
mixing. Dispersion would be simulated as particle movements, and mixing as ex-
changes between particles. The sharing between dispersion and mixing could be
derived from some local properties of the particle position or of the reconstructed
concentration pattern (de Dreuzy et al, 2012; Le Borgne et al, 2011, 2015). In this
framework, RW and TDRW methods have a strong capacity to integrate detailed
physical processes beyond the resolution of the coarse mesh-cell scale that may be
used in practical applications, for example by means of the flexibility offered by
the choice of the transition time distribution.

Finally, RW methods have been used at the small scale to model heat transfer
(Emmanuel and Berkowitz, 2007) and emulsion transport in porous media (Cortis
and Ghezzehei, 2007). At a larger scale, additional applications are related to the
interpretation of hydraulic pumping tests in heterogeneous porous media (Cortis
and Knudby, 2006), to the impact of matrix heterogeneity on the residence times
of solutes in fractured media (Robinet et al, 2007), and to the interpretation of
water age data sampled under pumping conditions (Leray et al, 2014).

5 Conclusions

RW methods have become a mature tool with skills to handle efficiently diffusion
processes or advection dispersion in porous media riddled with multiscale quenched
heterogeneities, including complex fracture patterns. The spatial scales of interest
range from nanometers (molecules) and microns for simulations over images of the
pore space to kilometers for field scale investigations. Radially convergent flows
can also be accounted for. The RW class of methods is usually easy to imple-
ment and possesses a natural structure adapted to High Performance Computing
(HPC), which in turn renders the methods powerful and suited to up-scaling appli-
cations. CTRW and TDRW have earned a rigorous probabilistic connection with
finite volume methods which allow us to compare the calculations with the con-
ventional equations of the physics of flow and transport. All these features provide
a natural framework for elaborating new theories of normal or anomalous large-
scale dispersion as they give a natural picture of solute mixing and spreading. RW
techniques highlight the competition between advection, dispersion and the under-
lying quenched disorder of the medium. The effects of retention and of chemical
reactions can also be modeled.

Future research might take several directions. To mention a few, it could be
worth finding some robust parameterizations of the scattering kernels M(a, t; x−a)
or of the transfer functions f(.) and link them with the medium disorder (Noetinger
and Gautier, 1998; Liu et al, 2000). Adsorption processes and chemical reactions
could also be simulated, at least in the linear regime, by adding a suitable variable
characterizing the state of the particle during its random motion. For example, one

could consider a two state vector denoted x(t)→ x(t)

[
c1(t)
c2(t)

]
, in which the indi-

cator of the state of the particle c1(t) can take the value 0 or 1, (c2(t) = 1− c1(t)).
These binary states could correspond to the fact that a particle is in the fractures
or not, or is in the phase of a specific chemical component, etc... Choosing suitable
transition probabilities for the elementary time step in the corresponding Langevin
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formulation (thus allowing the particle to swap between states randomly) would
provide a direct RW interpretation of the double porosity equations (60) or of
chemical reactions in solution and with the solid. Another important topic is be-
ing able to generalize RW methods with the aim of coupling explicitly the particle
concentrations and properties of fluid and fluid flow, leading for instance to vis-
cous or density driven fingering patterns. The difficulty resides in the fact that at
any time flow depends on the whole map of particle concentrations with the conse-
quence of manipulating fully coupled flow-transport problem (Saffman and Taylor,
1958; Dagan, 1989) where RW methods lose efficiency (cumbersome calculations
of local concentrations, breaks in parallel chains of computations, limitations for
solving non-linearity, etc.) At first glance, the framework of independent particles
undergoing RW seems not suited to that kind of complex coupling with non-linear
relationships between flow and transport. Nevertheless, the successful RW picture
of Diffusion Limited Aggregation (DLA) provided in Witten and Sander (1983)
and Tang (1985) and corresponding to fluid fingering with infinite mobility con-
trasts gives hope that RW could come out as a relevant method to address that
kind of issues. In particular, framing the macroscopic depiction of the motion of
unstable interfaces in random quenched disordered media could be undertaken by
relying upon a RW approach with particle motion conditioned by the degrees of
freedom describing the fluid fronts (Nœtinger et al, 2004; Tallakstad et al, 2009;
Teodorovich et al, 2011).

In addition, we can mention a last application of RW to calibrate the large-scale
model parameters that are needed in the traded or industrial simulators built for
the purpose of diverse applications at the field scale. Among these practical tools,
some operational methods use RW techniques in order to sample the admissible
space of the parameters to be calibrated. Such approaches were followed by (Hu,
2000; Romary, 2009). Increasingbly popular Kalman Filtering approaches (Oliver
et al, 1997; Evensen, 2009; Aanonsen et al, 2009) may also be included as being a
particular class of RW methods applied at the reservoir scale.

Finally, this review tentatively showed that the RW methods and more gen-
erally the Lagrangian approaches to fluid dynamics, was still a fairway for fertile
research activity in the domain of flow and transport in porous (fractured) media.
Comparisons with other methods were not considered to emphasize the general
elegance of random walk methods in the way they tackle various problems.

A Langevin equation and Fokker Planck equation

In this section, we show the equivalence between the Fokker-Planck equation (1) and the
Langevin equation (2). To this end, we use a duality argument. Let f(x) be a twice differentiable
function. We consider now the average 〈f [x(t)]〉. By virtue of (3), this average may be written
as

〈f [x(t)]〉 =

∫
dxP (x, t)f(x). (57)

We consider now 〈f [x(t+ dt)]〉. To this end, we note that x(t+ dt) is according to (2)

x(t+ dt) = x(t) + v[x(t)]dt+
√

2B[x(t)] · η(t) ≡ x(t) +∆x(t) (58)

where we use the Ito interpretation of the stochastic integral (Risken, 1996); η(t) is a Gaussian
random variable with 0 mean and unit variance. Taylor expansion of f [x(t)+∆x(t)] consistently
up to order dt then gives

f [x(t+ dt)]− f [x(t)] = ∇f [x(t)] · v[x(t)]dt+∇⊗∇f [x(t)] : B[x(t)]dt. (59)
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It is worthwile noting that this equation is also called the Ito formula, or chain rule of stochastic
calculus (Risken, 1996). Taking the average of (59) and using (57) gives after integration by
parts the Fokker-Planck equation (1).

B Dual-porosity models

Fractured porous media are characterized by a high property contrast between fractures and
matrix. This leads to introducing a new class of models, starting from the steady state double
porosity models (Barenblatt and Zheltov, 1960; Warren and Root, 1963) as derived by Arbogast
et al (1990) and Quintard and Whitaker (1993) that couple matrix and fracture by means of
a linear exchange term:{

φfVf
∂Pf (x,t)

∂t
= Df∇2Pf (x, t) +Q(x, t)

φmVm
∂Pm(x,t)

∂t
= Dm∇2Pm(x, t)−Q(x, t).

(60)

Here, φfVf and φmVm represent respectively the overall proportions of fracture and matrix
volumes (weighted by the relevant porosity and compressibility). The operation ∗ represents a
convolution operator. The model is closed once the interporosity flux Q(x, t) is expressed as a
function of Pf (x, t) and Pm(x, t). In the steady state case, Q(x, t) is given by:

Q(x, t) = λ
(
Pm(x, t)− Pf (x, t)

)
. (61)

The transfer coefficient λ, reciprocal of a time depends mainly on the geometry of the matrix
blocks. It is proportional to Dm. Its determination from the detailed DFN geometry will be
discussed in section 3.4.1.

More general models using memory functions accounting for more details of the diffusion
inside the matrix can be introduced (Odeh, 1965; de Swaan, 1976; Carslaw and Jaeger, 1986;
Daviau, 1986; Chen, 1989; de Swann and Ramirez-Villa, 1993). These models belongs to the
general class of Multiple Rate Mass Transfer (MRMT) models or Multiple Interacting Continua
(MINC) (Narasimhan and Pruess, 1988; Haggerty and Gorelick, 1995; de Dreuzy et al, 2013).
These models correspond to quite different formulations of the same physics differ through the
formulation of the exchange term. The latter appears as a time convolution expressed by:

Q(x, t) =
∫ t
0 G(t− τ)

(
d(Pm(x,τ)−Pf (x,τ))

dτ

)
dτ. (62)

In all cases, the exchange kernel G(t) is scaled by a parameter λ which depends only on
the geometry of the matrix blocks. It was shown in Landereau et al (2001) and Babey et al
(2015) that Multiple porosity models, MRMT models and transient models are equivalent and
correspond to different formulations of the same idea.

In most cases, the term Dm∇2Pm(x, t) may be neglected in the double porosity equa-
tions (60), so Pm(x, t) may be eliminated from the equations to provide the following generic
form: ∫ t

0
dτ(φfVf δ(t− τ) + φmVmf(t− τ))

∂Pf (x, τ)

∂τ
= ∇.(Df∇Pf (x, t)). (63)

The quantity f(t) is the time dependent exchange function. Introducing the average pressure

in the fractures < P̂f > (t) solution of the following initial value problem:

φ(x)
∂Pf (x, t)

∂t
= ∇.(D(x)∇Pf (x, t)) (64)

∀x ∈ ΩfPf (x, t = 0) = 1 (65)

∀x ∈ ΩmPf (x, t = 0) = 0 (66)

< Pf > (t) =
1

|Ωf |

∫
Ωf

dxPf (x, t) (67)

It is possible to show the following relation in the Laplace domain:

< Pf > (s) =
φfVf

s(φfVf + φmVmf(s))
. (68)
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The practical interest of introducing the f(s) function is that it can be shown that the general
solution of a double porosity system (60) can be directly related to a solution of a single
porosity equation replacing the argument s of the single porosity solution by the argument
s(φfVf + sφmVmf(s)). The large amount of analytical single porosity solutions that are well
known is sufficient for most practical situations. This means that all the double porosity
behavior is captured by f(s), which appears to be a renormalized apparent storativity. The

initial value problem (67) defining < P̂f > (t) has in turn a simple RW interpretation. The
quantity < Pf > (t) corresponds to the average proportion of particle undergoing RW (with
diffusivity Dm) that belongs to the fractures at time t given they was released at a random
location in the fractures at time t = 0. In the steady state case, the function f(s) is given by
(Noetinger and Estebenet, 2000; Noetinger et al, 2001a):

f(s) =
λ

φmVms+ λ
. (69)

It appears that λ is a characteristic diffusion time in the matrix. Explicit expressions may be
given for f(s) for either a layered medium, or for spherical blocks:

– for the layered case

f(s) =

√
λ

3sVm
tanh

√
3Vms

λ
, (70)

– for the spherical case

f(s) =
λ

5sVm

(√
15Vms

λ
cotanh

√
15Vms

λ
− 1

)
. (71)

These generic forms, or others can be used for large scale applications, solving (63) using any
numerical approach. It remains to be able to evaluate the transfer coefficient λ or the full f(t)
function. This is the objective of section 3.4.1.
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