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We study the self-averaging properties and ergodicity of the mean square displacement m(t) of
particles diffusing in d dimensional quenched random environments which give rise to subdiffusive
average motion. These properties are investigated in terms of the sample to sample fluctuations
as measured by the variance of m(t). We find that m(t) is not self-averaging for d < 2 due to the
inefficient disorder sampling by random motion in a single realization. For d ≥ 2 in contrast, the
efficient sampling of heterogeneity by the space random walk renders m(t) self-averaging and thus
ergodic. This is remarkable because the average particle motion in d > 2 obeys a CTRW, which
by itself displays weak ergodicity breaking. This paradox is resolved by the observation that the
CTRW as an average model does not reflect the disorder sampling by random motion in a single
medium realization.

Anomalous diffusion has been ubiquitously observed
in quenched random environments [1–3] for processes as
diverse as the motion of proteins in living cells [4–6],
the transmission of light in optical media [7], the mo-
tion of charge carriers in amorphous semi-conductors [8],
and particle and solute transport in heterogeneous porous
media [9–11]. The ergodicity of stochastic particle mo-
tions [12, 13] and the self-averaging properties of the
mean square displacement m(t) [1] are central aspects
for the understanding and prediction of diffusion pro-
cesses in random media because they measure how well
the diffusion behavior in a single disorder realization can
be described by the ensemble dynamics.

In many quenched disordered systems, the ensem-
ble particle motions obey continuous time random walk
(CTRW) dynamics [10, 13–15] for the particle positions
xn and times tn,

xn+1 = xn + ζn, tn+1 = tn + τn, (1)

which rely on the independence of subsequent space and
time increments ζn and τn (annealed disorder). Diffusion
in d > 2 dimensional random media follows in average a
CTRW because particles sample the disorder in such a
way that the average number of newly explored sites in-
creases with the number of random walk steps [1, 2]. For
d ≤ 2, correlations induced by a lower sampling efficiency
lead to different, but CTRW like average behaviors.

Spurred by results from single particle tracking for dif-
fusion in complex media, the question of ergodicity has
been studied within the CTRW approach [4, 13, 16–
18], and CTRW like models that describe the ensem-
ble diffusion behaviors in quenched disorder models for
d ≤ 2 [6, 19, 20]. As these approaches describe ensemble
particle motions, they do not conserve information on the
underlying individual disorder realizations. Therefore, in
principle they do not provide a way to quantify fluctua-
tions between disorder realizations. This problem is dealt

with in the above cited works by identifying a realization
of the transition time process {τn} with a disorder re-
alization. This identification however assumes that all
particles experience exactly the same disorder sequence
in a single disorder realization. Thus, it does not ac-
count for disorder sampling due to the diffusive random
motion, which is the mechanism that leads to CTRW en-
semble dynamics in d > 2, and governs the dynamics of
the sample to sample fluctuations between realizations.
The above cited works do not account for these key mech-
anisms when they conclude that the time averaged mean
square displacement is weakly non-ergodic.

In this Letter we study the self-averaging properties
and ergodicity of the mean square displacement in d–
dimensional quenched random environments. Starting
from a stochastic disorder model, we clearly distinguish
between the ensemble particle motion and the diffu-
sive random motion in single medium realizations. This
allows us to explicitly quantify the disorder sampling
through this diffusive random motion, which is the mech-
anism that governs the fluctuations of the diffusion be-
haviors between medium realizations.

Diffusion in Quenched Disorder.— Diffusive particle
motion in a single realization of a quenched random
medium can be described by the Langevin equation

dx(t) =
√

2D[x(t)]dtξ(t), (2)

where we use the Ito interpretation. The Gaussian
white noise has zero mean and covariance 〈ξi(t)ξj(t′)〉 =
δijδ(t− t′), where the angular brackets denote the noise
average. The particle distribution is given in terms of
the trajectories x(t) by p(x, t) = 〈δ[x−x(t)]〉. The diffu-
sion coefficient is set to D(x) = κθ(x)−1, where κ is the
constant molecular diffusion coefficient. The quenched
random mobility θ(x) represents the medium heterogene-
ity and quantifies particle retention due to physical and
chemical interactions with the medium. The discrete in
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space version of this model is equivalent to the quenched
random trap model [1] as outlined below. We investigate
the mean-square displacement m(t) = 〈x(t)2〉 and focus
on its ergodicity and self-averaging properties.

Single Disorder Realization.— In a single disorder re-
alization, m(t) is given by [21]

m(t) = 2κ〈s(t)〉d, (3)

where we introduced the process ds = θ[x(t)]−1dt, which
transforms the Langevin equation (2) to

dx(s) =
√

2κdsξ(s), dt(s) = θ[x(s)]ds. (4)

In order to probe the ergodicity of m(t), we consider the
time averaged mean square displacement [17]

m∆(t) =
1

t−∆

t−∆∫
0

dt′ [x(t′ + ∆)− x(t′)]2 , (5)

for lag times ∆ � t. The relative variance of m∆(t)
for ∆ with respect to the noise or disorder averages is
an indicator for its ergodicity [17]. In a single disorder
realization, the variance of m∆(t) with respect to the
noise average is, 〈m∆(t)2〉− 〈m∆(t)〉2 = 0 [21]. Diffusion
is of course ergodic in the sense of Refs. [13, 17]. Note
that the noise average of m∆(t) is given by 〈m∆(t)〉 =
m(t)∆/t, which provides an explicit relation between the
time and noise average mean square displacements [21].

Sample to Sample Fluctuations.— The sample to sam-
ple fluctuations of the mean square displacement are
probed by the relative variance

Σ(t) =
σ2

m(t)
m(t)2

, σ2
m(t) = m(t)2 −m(t)2 (6)

with σ2
m(t) the variance of m(t) between disorder realiza-

tions. The overbar in the following denotes the disorder
average. If limt→∞Σ(t) = 0, m(t) is referred to as self-
averaging, otherwise as non self-averaging [1]. Note that
the relative variance of 〈m∆(t)〉 is identical to Σ(t). Thus,
Σ(t) may be also considered a measure of ergodicity in
the sense of Refs. [13, 17].

Coarse Graining.— We consider a stationary and
isotropic random field θ(x), which is characterized by a
characteristic correlation scale `. We extract the large
scale particle dynamics through coarse graining. Thus,
we note that on observation scales much larger than `, the
organization of θ(x) may be represented by the medium
illustrated in Figure 1 for d = 2. The point values of
θ(x) are constant within the distance ` and distributed
randomly according to pθ(θ).

The coarse grained particle motions are obtained from
the Langevin equation (4) as

xn+1 = xn + `ηn+1, tn+1 = tn + θ(xn)τ̂ , (7)

FIG. 1: Section (30×30 pixels) of a realization of a quenched
random medium organized in equally sized pixels. To each
pixel a random value of mobility θ is assigned from the Pareto
distribution pθ(θ) = βθ−1−β for θ > 1. The numerical Monte-
Carlo simulations based on (7) for x0 = 0 use 106 particles in
103 disorder realizations and domain sizes of (d = 3) 1.25×108

voxels, (d = 2) 106 pixels and (d = 1) 1.2× 103 pixels.

where τ̂ is the first passage time to the boundaries of
a region of size ` by regular diffusion. We approxi-
mate its distribution here by the exponential ψ0(τ̂) =
τ−1
κ exp(−τ̂ /τκ) with the characteristic diffusion time
τκ = `2/(2κ) [10, 22, 23]. The unit random vector η
is distributed according to ψη(η) with mean 〈η〉 = 0
and 〈ηiηj〉 = δij . According to (7) particles describe
an unbiased space random walk characterized by a tran-
sition length given by the characteristic heterogeneity
scale. The transition time over the length ` is given by
τ(xn) = θ(xn)τ̂ , which, through its dependence on θ(xn)
is a quenched random variable. Note that the quenched
disorder model under consideration is equivalent to the
quenched random trap model [1].

The distribution ψ(τ) of transition times τ is directly
related to the distribution of the quenched disorder rep-
resented by θ(x) as

ψ(τ) =

∞∫
0

dθ θ−1pθ(θ)ψ0(τ/θ). (8)

We consider a heavy tailed distribution of θ with pθ(θ) ∝
θ−1−β , which gives for the transition time distribution
ψ(τ) ∝ τ−1−β for τ � τκ. We focus here on the range
0 < β < 1, for which subdiffusive behavior is observed [1].

The governing equations (7) describe a time domain
random walk in a quenched random environment, whose
space-time trajectory is given by

xn =
n∑

k=1

`ηk, tn =
n∑

k=1

τ(xk−1). (9)

The particle density is given by p(x, t) = 〈δ(x − xnt
)〉,

where nt = sup(n|tn ≤ t); the angular brackets denote
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the noise average over all particles. The particle den-
sity p(x, t) in a single disorder realization can be written
as [21]

p(x, t) =
∞∑

n=0

〈δ(x− xn)I(tn ≤ t < tn+1)〉, (10)

where the indicator function I(tn ≤ t < tn+1) is 1 if the
statement in the parenthesis is true and 0 else. The mean
square displacement (3) in a single disorder realization is
now given terms of nt as m(t) = d`2〈nt〉 [19, 21], which
can be expressed by using (10) as

m(t) = d`2
∞∑

n=0

n 〈I [tn ≤ t < tn+1]〉 . (11)

As we will see in the following, the noise average denoted
by the angular brackets plays a vital role for the quan-
tification of the sample to sample fluctuations of m(t).

Disorder Sampling and Noise Average.— In order to
determine the average particle dynamics and its fluctua-
tions, we need to quantify the ensemble statistics of (9)
and in particular the impact of the noise on the disorder
sampling in single disorder realizations. To this end, we
recall the average number Sn of distinct sites visited dur-
ing the d–dimensional random walk (7). It is well known
that Sn ∼ nd/2 for d < 2, Sn = n/ ln(n) in d = 2 and
Sn ∼ n for d > 2 [1]. Thus, the series of transition times
{τk}n

k=1 with τk ≡ τ(xk−1) can be reorganized into Sn

blocks of independent transition times τi. Each block
contains n/Sn identical members. Thus, we represent
now the particle motion in a single disorder realization
in terms of the renormalized surrogate trajectories

xn =
n∑

i=1

`ηi, tn =
Sn∑
i=1

n

Sn
τi, (12)

where the τi are independent increments distributed ac-
cording to (8).

In a single disorder realization, the spectrum of τi val-
ues that is sampled by the particles is limited by the
diffusive random motion. In fact, the average number of
different sites explored by the ensemble of random walk-
ers is (2n)d/2, which quantifies the volume covered by the
space random walk, while the number of distinct sites
visited after n random walk steps, that is, the number of
independent τi in (12) is given by Sn. In other words,
the average number of available sites after n steps to form
tn is (2n)d/2 while the average number of sites that con-
tribute to tn is Sn. Thus, the number Rn of independent
replica of tn is given by

Rn =
(2n)d/2

Sn
. (13)

The Rn can be seen as measure for the efficiency by which
the random walk samples the disorder. Thus, the mean

square displacement (11) in a single disorder realization
can be approximated in terms of the renormalized parti-
cle trajectories (12) as [21]

m(t) ≈ d`2
∞∑

n=0

n
1
Rn

Rn∑
i=1

I
[
t(i)n ≤ t < t

(i)
n+1

]
. (14)

The behavior of Rn with n determines the self-
averaging behavior with respect to the ensemble expec-
tations of the particle trajectory and in particular the
mean square displacement, as discussed below. It is in-
tuitively clear that the sampling efficiency in d < 2 is
rather low. In fact, the number of independent replica
is Rn ∼ 1, i.e., all the particles see in average the same
disorder. In d = 2 dimensions, Rn ∼ ln(n), and in d = 3,
Rn ∼

√
n, i.e., the number of independent replica, and

thus the part of the disorder spectrum sampled increases
with the number of random walk steps.

Note that some authors [19] ignore the noise average
and identify the mean square displacement in a single dis-
order realization with m(t) ≡ d`2nt. This implies that a
trajectory tn in (12) is identified with a disorder realiza-
tion, which is justified for d < 2. For d ≥ 2, however, it
does not reflect the actual sampling process.

Average Mean Square Displacement.— The behaviors
of the mean square displacement have been well known in
the literature [1]. We provide here an alternative deriva-
tion and a brief summary of the scaling behaviors.

The disorder averaged mean square displacement m(t)
is obtained by the ensemble averages of either (11) or (14)

m(t) = d`2
∞∑

n=0

nI(tn ≤ t < tn+1). (15)

It can be expanded to the explicit expression [21]

m(t) ≈ d`2
∞∫
0

dnn
t

αn

d ln(αn)
dn

fβ(t/αn), (16)

where we defined αn = nS
1/β−1
n . The function fβ(t)

denotes the one-sided stable distribution with stability
parameter β, whose Laplace transform [24] is given by
fβ(λ) = exp(−aβλ

β). Laplace transformed quantities are
distinguished from their time-space equivalents through
the argument. Using Sn ∼ nd/2 for d < 2 in (16) and
rescaling the integration variable give the well known be-
havior for the average mean square displacement [1, 21]

m(t) ∝ t
2β

2β−dβ+d . (17)

For d = 2, we set Sn ∼ n/ ln(n) and d > 2, Sn ∼ n,
which gives the scalings

m(t) ∝ tβ ln(t)1−β , m(t) ∝ tβ , (18)
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FIG. 2: Average mean-squared displacement from numerical
Monte-Carlo simulations based on (7), for (squares) d = 1,
(circles) d = 2 and (triangles) d = 3 dimensions for (top
figure) β = 2/5 and (bottom figure) β = 7/10. The lines
represent the scaling behaviors (17) and (18).

respectively. Figure (2) shows the average mean square
displacement from Monte-Carlo simulations in 103 real-
izations of d = 1, d = 2 and d = 3 versions of the ran-
dom medium illustrated in Figure 1. The analytical scal-
ings (17) and (18) are fully confirmed by the numerical
simulations.

It has been frequently pointed out [1] that diffusion in
quenched random media describes in ensemble average a
CTRW in d > 2 spatial dimensions. This means, the en-
semble particle motions can be described in terms of an
annealed disorder process. This is not valid for other
transport aspects. In particular, the sample to sam-
ple fluctuations of the mean square displacement reflects
clearly the quenched nature of the underlying disorder as
detailed in the following.

Self-Averaging and Ergodicity.— As outlined above,
the sample to sample fluctuations of m(t) are measured
by the variance σ2

m(t) defined in (6). Based on expres-
sions (14) for a single realization and (15) for the ensem-
ble average mean square displacement, we derive for the
variance σ2

m(t) [21]

σ2
m(t) ≈ d2`4

∞∫
0

dn
n2

Rn

t

αn

d ln(αn)
dn

fβ(t/αn)− 2d2`4
∞∫
0

dn
n

Rn

t

αn

d ln(αn)
dn

fβ(t/αn)

n∫
0

dkk
t

αk

d ln(αk)
dk

fβ(t/αk)

− d2`4
∞∫
0

dn
n2

Rn

[
t

αn

d ln(αn)
dn

fβ(t/αn)
]2

. (19)

The temporal scalings of the different terms contributing
to the variance are extracted in the same way as done
for the average mean square displacement. Recall that
αn = nS

1/β−1
n and Rn = (2n)d/2/Sn. Inserting the re-

spective expressions of Sn for d < 2, d = 2 and d > 2
in (19) and rescaling of the integration variables gives
the temporal scaling of the variance. Specifically, we find
that the third term on the right side is subleading, while
the first two terms determine the leading asymptotic time
behavior [21].

In d < 2 dimensions, we find

σ2
m(t) ∝ m(t)2 ∝ t

4β
2β−dβ+d . (20)

This implies that dispersion is not self-averaging in d < 2
because the relative variance Σ(t) asymptotes towards a
constant in the limit of t → ∞, limt→∞Σ(t) 6= 0. For
d ≥ 2 dimensions this is different. For d = 2, we obtain
for σ2

m(t) the scaling

σ2
m(t) ∝ t2β ln(t)1−2β . (21)

Thus, the relative variance decays to zero logarithmically
in the limit of infinite times, Σ(t) ∝ 1/ ln(t) because m(t)
behaves as (18). For d > 2 dimensions we find the scaling

σ2
m(t) ∝ tβ(3−d/2). (22)
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FIG. 3: Variances of the mean-squared displacement from
numerical Monte-Carlo simulations based on (7), for (squares)
d = 1, (circles) d = 2 and (triangles) d = 3 dimensions for
(top figure) β = 2/5 and (bottom figure) β = 7/10. The lines
represent the scaling behaviors (20), (21) and (22).

The relative variance then scales as Σ(t) ∝ tβ(1−d/2) ac-
cording to (18). It decays faster as the dimensionality
of space increases. Diffusion is self-averaging for d ≥ 2
and thus ergodic in the sense of Refs. [13, 17]. Figure 3
illustrates the temporal evolution of σ2

m(t) sampled from
numerical Monte-Carlo simulations over 103 realizations
of the quenched random medium illustrated in Figure 1.
The asymptotic behavior of the numerical data confirms
the derived scaling behaviors (20)–(22).

In conclusion, we find that the mean square displace-
ment for diffusion in a quenched random medium is not
self-averaging or ergodic for d < 2 due to the inefficient
spatial sampling of heterogeneity. In fact all the particles
explore in a given realization in average the same disor-
der sequence. Such a sampling behavior is present in the
CTRW (1) if a time trajectory tn is interpreted as a sin-
gle disorder realization [17, 19]. In d ≥ 2 on the other
hand, the mean square displacement is self-averaging and
thus ergodic due to the efficient heterogeneity sampling
by the diffusive random motion. This is a remarkable
finding because the ensemble particle motion in d > 2
actually follows the CTRW (1). As discussed in the In-
troduction, the CTRW displays weak ergodicity breaking
for the mean square displacement [6, 13, 17] because it

simulates a low sampling efficiency. Thus, while the av-
erage particle motion follows a CTRW for d > 2, the
quenched nature of the underlying disorder and the sam-
pling efficiency of the diffusive random motion lead to
a very different fluctuation behavior. These results em-
phasize the importance of the sound understanding of the
fluctuation mechanisms underlying observed anomalous
behaviors, and shed new light on the interpretation and
prediction of particle movements and solute transport in
quenched random environments.
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agreement no. 617511).
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This supplementary material provides details on the derivation of the expressions for the mean
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m(t).
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OBSERVABLES

Mean Square Displacement

The mean square displacement in a single medium realization it given by

m(t) = 2

t∫
0

dt′
t∫

0

dt′′
〈√

D[x(t′)]D[x(t′′)]ξ(t′)ξ(t′′)
〉

= 2d

t∫
0

dt′〈D[x(t′)]〉. (1)

Note that we use the Ito interpretation such that 〈D[x(t)]ξ(t)〉 = 0. Thus, the second equal

sign follows because the only non-vanishing correlation is the one between ξ(t′) and ξ(t′′).

This can be seen as follows. Suppose that there is a correlation between
√
D[x(t′)] and

ξ(t′′). This means that t′ > t′′. Then however, the correlation between
√
D[x(t′′)] and ξ(t′)

vanishes. And the same holds vice versa.

We set now D(x) = κ/θ(x) and define ds = dt/θ[x(t)], which gives for m(t)

m(t) = 2κd 〈s(t)〉 = d`2〈nt〉. (2)

For the last equation, we used the coarse grained particle trajectory

xn+1 = xn + `ηn+1, tn+1 = tn + θ(xn)τ̂ , (3)

where τ̂ is an exponential random variable with mean τκ = `2/(2κ). Expression (2) can be

further expanded as

m(t) = d`2〈nt〉 = d`2

∞∑
n=0

n〈δn,nt〉 = d`2

∞∑
n=0

n〈I(tn ≤ t < tn+1)〉. (4)

The noise average may be written as

m(t) = d`2

∞∑
n=0

n

Bn

Bn∑
i=1

I
[
t(i)n ≤ t < t

(i)
n+1

]
, Bn =

(
Vn
Sn

)
. (5)

where Vn = (2n)d/2 is the average number of different sites explored by the random walkers

after n steps. The number of independent sites that constitute tn is equal to Sn. Thus the

number of copies of tn at n steps is equal to Bn, the binomial coefficient of Vn over Sn.

Within these Bn replica of tn we distinguish Bn/Rn families of independent members, where

Rn = Vn/Sn is the number of members. Again, the total number of explored sites is equal

2



to Vn, therefore the number of independent replica of tn that can be formed is equal to Rn.

We can write (5) now as

m(t) = d`2

∞∑
n=0

nRn

Bn

Bn/Rn∑
i=1

{
1

Rn

Rn∑
k=1

I
[
t(i,k)
n ≤ t < t

(i,k)
n+1

]}
. (6)

Note that the expression in curly brackets denotes the distribution of the number of steps

needed to reach time t in the section of the medium sampled by the random walker. As each

of the Bn/Rn families explores in average the same disorder, they are in average the same.

Thus, we approximate

m(t) ≈ d`2

∞∑
n=0

n

Rn

Rn∑
k=1

I
[
t(k)
n ≤ t < t

(k)
n+1

]
. (7)

We argue that this expression captures the impact of the noise on the random walkers’

sampling of the medium heterogeneity in a single realization adequately.

Time Averaged Mean Square Displacement

The time averaged mean square displacement is defined as

m∆(t) =
1

t−∆

t−∆∫
0

dt′ [x(t′ + ∆)− x(t′)]
2

(8)

The increment x∆(t) = x(t+ ∆)− x(t) can be written as

x∆(t) =

t+∆∫
t

dt′
√

2D[x(t′)]ξ(t′). (9)

We consider the limit of ∆→ 0, for which we obtain

x∆(t) =
√

2D[x(t)]w∆(t), w∆(t) =

t+∆∫
t

dt′ξ(t′), (10)

with 〈w∆(t)〉 = 0 and 〈w∆(t) ·w∆(t′)〉 equal to d∆ if |t− t′| < ∆ and 0 else. This gives for

m∆(t)

m∆(t) =
2

t

t∫
0

dt′D[x(t′)]w∆(t′)2. (11)
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The ergodicity of the diffusion process in a single disorder realization is probed by the

variance of m∆(t) with respect to the noise ensemble. The noise mean of m∆(t) is given by

〈m∆(t)〉 =
2d∆

t

〈 t∫
0

dt′D[x(t′)]

〉
=
m(t)∆

t
. (12)

For the noise averaged mean squared m∆(t), we obtain

〈m∆(t)2〉 =
4

t2

t∫
0

dt′
t∫

0

dt′′D[x(t′)]D[x(t′′)]〈w∆(t′)2w∆(t′′)2〉 =
m(t)2∆2

t2
+ . . . , (13)

where the dots denote subleading contributions of order ∆3/t3. Thus, diffusion is of course

ergodic in a single medium realization.

Average Mean Square Displacement

The average mean square displacement is obtained from (2) and (4) as

m(t) = d`2〈nt〉 = d`2

∞∑
n=0

nI(tn ≤ t < tn+1). (14)

Disorder Variance of Mean Square Displacement

The second disorder moment of m(t) reads as

m(t)2 =
∞∑

n,k=0

nkd2`4 1

Rn

1

Rk

Rn∑
i=1

Rk∑
j=1

I
[
t
(i)
n ≤ t < t

(i)
n+1

]
I
[
t
(j)
k ≤ t < t

(j)
k+1

]
. (15)

By definition, the t
(i)
n and t

(j)
k are independent for i 6= j. For i = j we have by virtue of the

impulse functions that n = k. Thus, we can write m(t)2 as

m(t)2 = d2`4

∞∑
n=0

n2

Rn

I(tn ≤ t < tn+1)− 2d2`4

∞∑
n>k=0

nk

Rn

I(tn ≤ t < tn+1) I(tk ≤ t < tk+1)

− d2`4

∞∑
n=0

n2

Rn

I(tn ≤ t < tn+1)
2

+
∞∑
n=0

nd`2I(tn ≤ t < tn+1)
∞∑
k=0

kd`2I(tk ≤ t < tk+1) (16)

Note that the last expression on the right side is equal to the square of the average second

moment. Thus, we obtain for the variance of the mean square displacement the expression

σ2
m(t) = d2`4

∞∑
n=0

n2

Rn

I(tn ≤ t < tn+1)− 2d2`4

∞∑
n>k=0

nk

Rn

I(tn ≤ t < tn+1) I(tk ≤ t < tk+1)

− d2`4

∞∑
n=0

n2

Rn

I(tn ≤ t < tn+1)
2
. (17)
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EXPLICIT EXPRESSIONS AND SCALING BEHAVIORS

First, we consider the Laplace transform of the transition time distribution for times

t� τκ. As indicated in the main text, the transition time distribution is heavy tailed such.

It behaves as

ψ(τ) ∼
(
τ

τκ

)−1−β

, (18)

where we focus on the range 0 < β < 1. It is well known that its Laplace transform can be

expanded as

ψ(λ) = 1− aβλβ + . . . . (19)

for λτκ � 1 and aβ a constant. Note that the numerical simulations consider a Pareto

distribution of θ, pθ(θ) = βθ−1−β for θ > 1 which gives for the distribution of transition

times ψ(τ) the explicit expression

ψ(τ) =
β

τκ

(
τ

τκ

)−1−β

γ(1 + β, τ/τκ), (20)

with γ(a, z) the lower incomplete Gamma function [1].

In order to determine now the scaling behaviors of the mean and variance of the mean

square displacement, we consider the average over the impulse function and its scaling form,

In(t) = I(tn ≤ t < tn+1). (21)

Note that In(t) is equal to the probability distribution of the nt. Its Laplace transform is

given by

In(λ) = λ−1[exp(−λtn)− exp(−λtn+1)]. (22)

The times tn and tn+1 are given by

tn =
Sn∑
i=1

γnτi, tn+1 =

Sn+1∑
i=1

γn+1τi, (23)

where we define γn ≡ n/Sn. Using these expressions in (22) and performing the ensemble

average we obtain

In(λ) = λ−1
[
ψ(λγn)Sn − ψ(λγn+1)Sn+1

]
, (24)
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Using (19) and by virtue of the generalized central limit theorem, we approximate now

fn(λ) ≡ ψ(λγn)Sn ≈ exp
[
−Snaβ (λγn)β

]
, (25)

which in time domain has the scaling form

fn(t) =
1

αn
fβ (t/αn) . (26)

where we define for convenience αn = γnS
1/β
n .

We define now Fn(λ) = λ−1fn(λ) such that In(λ) can be written as

In(λ) = Fn(λ)− Fn+1(λ). (27)

The Fn(t) has the scaling form

Fn(t) = Fβ(t/αn) =

t/αn∫
0

dt′fβ (t′) , (28)

We approximate now In(t) as

In(t) ≈ −dFn(t)

dn
=

t

αn

d ln(αn)

dn
fβ(t/αn). (29)

Note that the Laplace transform of fβ(λ) is according to (25) and (26) given by

fβ(λ) = exp(−aβλβ). (30)

Average Mean Square Displacement

We can write (14) using (29) as

m(t) ≈ d`2

∞∫
0

dn
nt

αn

d ln(αn)

dn
fβ (t/αn) = d`2nt (31)

In d < 2, Sn ∼ nd/2 and γn = n1−d/2, therefore αn = n
2β−dβ+d

2β such that

m(t) ≈ d`2 2β − dβ + d

2β

∞∫
0

dn
t

n
2β−dβ+d

2β

fβ

(
t

n
2β−dβ+d

2β

)
∝ t

2β
2β−dβ+d . (32)

Thus, we have at the same time that nt ∝ t
2β

2β−dβ+d .
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In d = 2, Sn ∼ n/ ln(n) and γn = ln(n), therefore αn = n1/β ln(n)1−1/β such that

m(t) ≈ d`2

β

∞∫
0

dn
t

n1/β ln(n)1−1/β
f ′β

(
t

n1/β ln(n)1−1/β

)
∝ tβ ln(t)1−β. (33)

Thus, we have at the same time that nt ∝ tβ ln(t)1−β.

In d = 3, Sn ∼ n and γn = 1, therefore αn = n1/β such that

m(t) ≈ d`2

β

∞∫
0

dn
t

n1/β
fβ

(
t

n1/β

)
∝ tβ. (34)

Variance of the Mean Square Displacement

We split expression (17) into three parts,

σ2
m(t) = d2`4J1(t)− d2`4J2(t)− d2`4J3(t) (35)

where we defined

J1(t) =
∞∑
n=0

n2

Rn

I(tn ≤ t < tn+1) (36)

J2(t) = 2
∞∑

n>k=0

nk

Rn

I(tn ≤ t < tn+1) I(tk ≤ t < tk+1)

J3(t) =
∞∑
n=0

n2

Rn

I(tn ≤ t < tn+1)
2
. (37)

For J1(t), we obtain immediately by using (29)

J1(t) ≈
∞∫

0

dn
n2

Rn

t

αn

d ln(αn)

dn
fβ(t/αn). (38)

In d < 2, Sn ∼ nd/2 and γn = n1−d/2, therefore αn = n
2β−dβ+d

2β and Rn = 2d/2 such that

J1(t) ≈ 2β − dβ + d

21+d/2β

∞∫
0

dnn
t

n
2β−dβ+d

2β

fβ

(
t

n
2β−dβ+d

2β

)
∝ t

4β
2β−dβ+d . (39)

In d = 2, Sn ∼ n/ ln(n) and γn = ln(n), therefore αn = n1/β ln(n)1−1/β, and Rn = 2 ln(n)

such that

J1(t) ≈ 1

2β

∞∫
0

dn
n

ln(n)

t

n1/β ln(n)1−1/β
f ′β

(
t

n1/β ln(n)1−1/β

)
∝ t2β ln(t)1−2β. (40)
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In d = 3, Sn ∼ n and γn = 1, therefore αn = n1/β, and Rn = 2d/2nd/2−1 such that

J1(t) ≈ 1

2d/2β

∞∫
0

dnn2−d/2 t

n1/β
fβ

(
t

n1/β

)
∝ tβ(3−d/2). (41)

For J2(t), we obtain by using (29)

J2(t) ≈ 2

∞∫
0

dn
n

Rn

t

αn

d ln(αn)

dn
fβ(t/αn)

n∫
0

dkk
t

αk

d ln(αk)

dk
fβ(t/αk). (42)

In d < 2, Sn ∼ nd/2 and γn = n1−d/2, therefore αn = n
2β−dβ+d

2β and Rn = 2d/2 such that

J2(t) ≈ (2β − dβ + d)2

21+d/2β2

∞∫
0

dn
t

n
2β−dβ+d

2β

fβ

(
t

n
2β−dβ+d

2β

) n∫
0

dk
t

k
2β−dβ+d

2β

fβ

(
t

k
2β−dβ+d

2β

)
∝ t

4β
2β−dβ+d . (43)

In d = 2, we obtain along the same lines that

J2(t) ∝ t2β ln(t)1−2β, (44)

and for d > 2, we find that

J2(t) ∝ tβ(3−d/2). (45)

For J3(t), we obtain by using (29),

J3(t) ≈
∞∫

0

dn
n2

Rn

[
t

αn

d ln(αn)

dn
fβ(t/αn)

]2

(46)

In d < 2, Sn ∼ nd/2 and γn = n1−d/2, therefore αn = n
2β−dβ+d

2β and Rn = 2d/2 such that

J3(t) ≈ (2β − dβ + d)2

22+d/2β2

∞∫
0

dn

[
t

n
2β−dβ+d

2β

fβ

(
t

n
2β−dβ+d

2β

)]2

∝ t
2β

2β−dβ+d . (47)

In d = 2, we obtain along the same lines that

J3(t) ∝
(

t

ln(t)

)β
, (48)

and for d = 3, we find that

J3(t) ∝ tβ(1−d/2). (49)
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Thus the leading contributions to σ2
m(t) at long times come from J1(t) and J2(t).

∗ Electronic address: marco.dentz@csic.es

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications,

New York, 1972).

9


