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Abstract Production rates in horizontal shale gas wells display declines that are
controlled by the low permeability and the intrinsic heterogeneity of the shale
matrix. We present an original multi-continuum approach that yields a physical
model able to reproduce the complexity of the decreasing gas rates. The model
describes the dynamics of gas rate as function of the physical reservoir parameters
and geometry, while the shale matrix heterogeneity is accounted for by a stochastic
description of transmissivity field. From the D = 3 dimensional problem setting,
including the heterogeneous shale matrix, the fractures generated by the hydro-
fracking operations, as well as the production well characteristics, we establish an
effective upscaled 1D model for the gas pressures in fracture and matrix as well as
the volumetric flux. We analyse the decline curves behaviour and we identify the
time scales that characterize the dynamics of the gas rate decline using explicit
analytical Laplace space solutions of the upscaled process model. Asymptotically
the flux curves decrease exponentially, while in an intermediate regime we find a
power law behaviour, in which the flux scales with a power-law in time as t−β ,
where β reflects the medium heterogeneity. We use this solution to fit a set of real
data displaying distinctly different decline trends and study the sensitivity of the
model to the reservoir parameters in order to identify their respective controls at
the different stages of the decline curve dynamics. Results indicate that the initial
value of the gas rate is determined by the transmissivity of the fractures and the
initial pressure of the gas in the shale matrix. The latter causes mainly a shift of the
entire decline curve. The early time of decline curve shape is primarily controlled
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by the fracture properties (compressibility and transmissivity). During the main
part of the economically valuable production times, i.e. before the production rate
drops exponentially, the decline curve is strongly controlled by the properties of
the shale-rocks including their heterogeneity, which is modeled by two parameters
describing the non-Fickian pressure diffusion effects in a stochastic framework.

Keywords Shale Gas · Modeling · Multi-continuum Model · Shale Reservoirs

1 Introduction

Shale gas has become an increasingly important source of natural gas. Shale gas
reservoirs contain a large portion of the remaining gas reserves in the world, but
are less developed in comparison with conventional gas. The main characteristic of
shale gas reservoirs is that they exhibit extremely low matrix permeability. Mod-
elling the dynamic behaviour of shale gas extraction is particularly challenging
because the problem includes a variety of physical and chemical processes interre-
lated at different scales. Moreover, the spatial heterogeneity triggered by fracking
operations brings complexity in the gas flow dynamics while the extremely tight
formations give rise to long asymptotic decreasing flowrate in the gas production
that cannot be explained by classical linear models.

Most of the commonly used methods derive from the pioneer work of Arps,
developed for conventional reservoir [1]. Arps rate time model and successive ex-
tensions quantify the decline behaviour in terms of the Arps decline exponent
b. Decline curve analysis is one of the oldest and most used diagnostic tool of
petroleum engineer. Arps-derived methods are popular for analyzing decline curves
because they require only a ’best fit’ with the measured gas rate. However, the use
of Arps rate decline equations for unconventional reservoirs often over estimates
reserves. The b values obtained by fitting gas production data are greater than 1,
resulting in unrealistic production forecasts with rates that never approach zero.
This issue has been widely discussed, e.g. [2,3], and new models have been pro-
posed to avoid these physically unreasonable results, for instance by considering a
transient productivity index e.g. [4–6].

Generally, gas production is characterized by successive different regimes: after
a first initial regime often difficult to predict because it depends by many different
processes (fracturing, flow-back of the water used to fracking, etc), gas enters
the effective production regime where the gas flow through a system of micro-
fracture thought the extraction well. During this transient regime the gas rate
production curve decreases following different scaling behaviour till it achieves the
final regime where the gas production rate decrease exponentially [7]. A limitation
of the models mentioned above, is that the development of different flow regimes is
difficult to predict which limits their utility for long-term production predictions.
Specifically the transient regime preceding the exponential decrease is controlled
by coupled effects of both the fractures and the shale matrix properties and can
display distinctly different trends.

The aim of this work is to obtain a simplified but effective description of the
dynamics of gas production at observation scale, tightly linked to the underlying
processes at lower scales. This upscaled model allows extracting the critical infor-
mation on the reservoir characteristics, which can be used for predicting long-term
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behaviour. Considering the manifest uncertainty on the actual processes and the
physical parameters that control the dynamic of gas the extraction, many authors
have focused their efforts on developing models as simple as possible.

For instance [8] stated that gas production follows a nearly universal function
scaled by only two parameters. The total amount of gas in place and an charac-
teristic fracture interference time, i.e., the time for a pressure pulse to propagate
between two planar hydrofracture. The op. cit. model [8] is a non-linear homoge-
neous diffusion model. It predicts that after few months of production, the recov-
ery rate scales as t−1/2 until a given characteristic time after which it decreases
exponentially. This is the classical behavior observed in dual continuum models
for linear solute transport or two-phase flow in highly heterogeneous media [25,
24]. However, there are many examples, as those studied in this paper, of rate
curves which do not display the t−1/2 decline. Yet, shale gas reservoir are natu-
rally heterogeneous and we can anticipate that this heterogeneity must be taken
into account for explaining the distinctly different rate curves observed. Moreover
we note that the total amount of gas, one of the two parameters of the op. cit.
model of [8], is rarely known a priori.

The aim of the present paper is to propose a model that represent the complex,
3D heterogeneous reservoir response with a simplified 1-dimensional linear model,
where heterogeneity is handled within a stochastic framework. Specifically, we
derive an upscaled multi-continuum model that can explain the long declining
rates observed in the analysis of gas shale production

The model is based on the widely used dual porosity approach which is a
priori meaningful for such a dual system containing hydraulic discontinuities in
less permeable matrix. In dual porosity reservoir models, the shale matrix is the
portion of the reservoir that can store large quantities of gas, but displays low
conductivity that hamper transporting the gas over long distances. Conversely,
the fractures, which partition the matrix, is the main vector for transporting the
gas toward the extraction well, for instance. But the fractures have a limited
potential for storage.

In conventional reservoir the fractured network can pre-exist (naturally frac-
tured reservoir) but in shale gas reservoirs, the fracture clusters, constituted by
fracture, micro-fracture, cracks and natural fractures re-opened, are generated
by multiple stages of hydraulic fracturing around horizontal wells [9]. After the
fracking stages, the gas diffuses to the production well through the network of
fractures, which is recharged by diffusion from the matrix elements. Since the
pioneering work of [10], a number of double permeability/porosity models have
been developed (e.g. [11–15]) and have been extended to gas production problem
even considering heterogeneous matrix (e.g. [16–20]). These models assume that
both fractures and matrix elements are in quasi-equilibrium and mass transfer is
modelled as a first order process. Linear reservoir models that take into account
transient matrix-fracture transfer have been derived in Laplace space by [12,21]
and extended by [22].

Here we consider non-equilibrium effects in the matrix triggered by its het-
erogeneity. Mass exchanges between the fracture system and the heterogeneous
matrix give rise to non-integer exponents of the rate-decline slopes and, as an
evidence, allow modeling a large range of rate-production data. Transient matrix-
fracture transfers are controlled by a matrix memory kernel which is defined by
the properties of the matrix only. On the other hand we reduce the complexity
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of the problem by considering diffusion in the matrix linear, even though it is,
in principle, non-linear. Notice that the validity of linearization of the diffusion
problem in the matrix has been favorably discussed in [23–25].

The underlying conceptual model is illustrated schematically in Figure 1. In
Section 2, we describe the multi-continuum model, derive the constitutive upscaled
effective equations and then give an analytical solution for the pressure and the
gas flowrate in the Laplace space. In Section 3 we test this multi-continuum model
to actual gas production from a shale gas formation, which displays dissimilar de-
creasing rate curves. The objective of these examples is to illustrate the ability of
the model to explain distinctly different behaviours by the intrinsic properties of
the reservoir.Then, we study the sensitivity of the model to the reservoir parame-
ters and identify the set of parameter that primarily control the dynamics of the
declining flowrate. Conclusions are given in Section 4.

2 Multi-Continuum Model

The model relies on the idea that the gas, initially trapped in the matrix, can be
drained by the fractured zone after hydraulic fracturing and diffuse toward the
horizontal part of the extraction well. Thus, one can identify two main processes:
(i) the refilling of the fractured zone by the matrix, and (ii) the migration of the
gas to the extraction points through the fractured zone. Figure 1 illustrates the
conceptual model. The model is constituted by a horizontal well at a given depth
with a number of vertical fractures (Nf ) perpendicular to the well. Each fracture
stage is associated to a planar fractured zone, which is characterized by a higher
conductivity compared to the surrounding matrix, where the gas is trapped.

The aim is to start from the d = 3 dimensional radial conceptual model given in
Fig. 1 and upscale it into a d = 1 dimensional equivalent one by using spatial and
ensemble averaging. We handle the spatial heterogeneity of the matrix stochas-
tically, with spatially varying conductivities model as spatial random fields. We
consider a stationary and ergodic medium with a finite correlation, so that the
medium can be completely defined by a single point distribution for an observa-
tion scale much larger than the correlation scale.

2.1 Model Derivation

2.1.1 Statement of the problem

The governing equation for the pressure in the model sketched in figure 1 reads in
radial coordinates [26]:

s(z)
∂p(r, z, t)

∂t
− 1

r

∂

∂r

»
r K(r, z)

∂p(r, z, t)

∂r

–
− ∂2[K(r, z) p(r, z, t)]

∂z2
= 0, (1)

where p(r, z, t) is the pressure in radial coordinates (r, z) at time t, with rw ≤ r ≤
R, s(z) is the effective compressibility of the system and K is given by K = k/µ
with k the permeability of the system and µ the viscosity of the gas. The effective
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Fig. 1 Sketch of the multi-continuum model. The model is constituted by an horizontal well
of radius rw at a depth h with a given number Nf of fractures which create fractured zones
assumed to be circular, with a radius R and a planar of thickness zf . The fractured zone R
partition the matrix whose drainable thickness is denoted by zm. The radial distance from the
axis of the horizontal well is indicated by r and the horizontal distance by z. The parameters
sf and sm denote the specific storativity of the fracture zone and of the matrix, respectively,

[L−1], while Kf and Km(r) denote the respective conductivities [LT−1].

compressibility of the system is given by [26]:

s = (1− φ) a + φ bi, a =
1

1− φ

∂φ

∂p
, bi =

1

ρi

∂ρi

∂p
(2)

with a and bi the compressibility of the reservoir rock and of the fluid respectively,
φ the porosity and ρi the density. In case of multi-phase flow the total compress-
ibility is given by: s = (1−φ)a+φ(Sobo +Sgbg +Swbw), where S is the saturation
index and the subscripts o, g, w, stand for: oil, gas and water [26]. However
the multi-phase extension is generally not straightforward because parameters can
vary in time.

Equation (1) can be separated into one equation for radial diffusion in the
planar fracture and another one for diffusion in the matrix through the fractured
zone. For the fracture, we obtain

sf
∂pf (r, z, t)

∂t
− 1

r

∂

∂r

»
r Kf

∂pf (r, z, t)

∂r

–
−Kf

∂2pf (r, z, t)

∂z2
= 0, (3)

where we define pf (r, z, t) = p(r, z, t) for z ≤ zf with zf maximum half aperture
of the planar fracture, and similarly for sf and Kf . Here and in the following
the subscripts f and m refer to the fractured zone and to the matrix, respectively.
We characterize the fractured zone by constant effective fracture storativity sf and
conductivity Kf arguing that the variability scale of fracture heterogeneity is small
such that the fracture homogenizes at times much shorter than the time scales of
interest. Symmetry allows us to consider mass exchange between a single fracture
matrix system only. The solution for the full system is obtained by multiplication
of the solution for the single fracture matrix system by twice the number Nf of
fracture stages. In the matrix, the pressure behavior is described by

sm
∂pm(r, z, t)

∂t
− 1

r

∂

∂r

»
r Km(r)

∂

∂r
pm(r, z, t)

–
−Km(r)

∂2pm(r, z, t)

∂z2
= 0, (4)
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where sm, pm(r) and Km(r) indicate respectively effective compressibility, pres-
sure and permeability over viscosity in the matrix for zf ≤ z ≤ zm and zm the
maximum size of matrix influenced by the fracture.

At the interface between the fractured zone and the matrix, at z = zf , we
impose continuity of pressure and flux:

pf (r, zf , t) = pm(r, zf , t), Kf
∂pf (r, z, t)

∂z

˛̨̨̨
zf

= Km(r)
∂pm(r, z, t)

∂z

˛̨̨̨
zf

. (5)

Moreover we consider that the radial flux thought the external edge of the fracture
is negligible because R indicates the radius of influence of the horizontal well which
determines the Stimulated Reservoir Volume (SRV). Gas trapped at a distance
r > R from the horizontal well is not mobilized during production [8]. Thus,
we set a no-flux condition at the edge of the fracture, Kf [∂pf (r, z, t)/∂r]r=R =
0. The same boundary condition is imposed in the matrix domain at z = zm,
Km(r)[∂pm(r, z, t)/∂z]z=zm = 0.

The permeability in the fracture is much larger than the permeability in the
matrix, thus Kf � max{Km(r)}. Therefore, equilibrium along the z direction
in the fracture is reached relatively faster than in the matrix and we can suitably
assume pf (r, z, t) ' pf (r, t). Moreover, the difference in conductivity between frac-
ture and matrix makes matrix diffusion preferably oriented in the direction of the
fractures. Thus, neglecting radial diffusion in the matrix, the constitutive equation
for the matrix given in Eq. (4) reduces to:

sm
∂pm(r, z, t)

∂t
−Km(r)

∂2pm(r, z, t)

∂z2
= 0. (6)

We assume that the matrix conductivity varies in radial direction. The matrix acts
as a source term for the fractures as expressed by the continuity conditions (5).

2.1.2 Spatial average

In order to obtain a simpler effective description, we integrate the governing dif-
fusion equation over the the coordinate z, and we reduce the d = 3 dimensional
radial problem into an effective d = 1 dimensional one. The average pressures in
the fracture and in the matrix are defined as

pf (r, t) =
1

zf

zfZ
z0

dz pf (r, z, t), pm(r, t) =
1

zm

zm+zfZ
zf

dz pm(r, z, t). (7)

By executing spatial average of Eq. (3), as defined in 7, over the fracture aperture
zf , gives:

Sf

∂pf (r, t)

∂t
− 1

r

∂

∂r
rTf

∂pf (r, t)

∂r
= Km(r)

∂pm(r, z, t)

∂z

˛̨̨̨
z=zf

, (8)

where we used the continuity condition (5) and we defined the total compressibility
of the fractured zone Sf = sfzf and the effective transmissivity Tf = Kfzf . The
last term in Eq. (8) is the flux at the interface between fracture and matrix and
it is obtained from the solution of the diffusion equation in the matrix, which is
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given in Eq.(6). We solve Eq.(6) in the Laplace space with the following boundary
conditions: continuity of pressure pm(r, z, t) = pf (r, t) at z = zf and no flux
condition boundary condition at z = zm. Notice that we set the fracture pressure
at the interface equal to the cross-sectional average, which is justified because
the vertical homogenization time over the fracture width tf = z2

fsf/Kf is much
smaller than the characteristic matrix time scales.

Using the method of Green functions, we obtain the average pressure in the
matrix as a function of the pressure in the fractured zone:

pm(r, t) =

Z t

0
dτg[t− τ, τm(r)]pf (r, τ)

− pm(r, 0)

Z t

0
dτg[τ, τm(r)] + pm(r, 0), (9)

with the uniform in z initial condition pm(r, t = 0) = pm(r, t = 0). The character-
istic time scale for pressure propagation within the matrix is

τm(r) = z2
msm/Km(r). (10)

In Eq. (9), pm(r, 0) is the initial pressure in the matrix and the matrix mem-
ory kernel g(t, τm) is obtained by averaging the solution of Eq. (6) for the pulse
boundary condition pm(r, z, t) = δ(t) at the interface z = zf . The function g(t, τm)
is computed, for simplicity, in Laplace space. Laplace transform of g(t, τm), with
respect to the time t, reads as [27,28]:

g∗[λ, τm(r)] =
1p

λτm(r)
tanh

»q
λτm(r)

–
(11)

where λ is the Laplace variable and the asterisk denotes function in Laplace space.
Laplace transform is defined in [29]. For times t � τm(r) the memory function
g(t, τm) decreases with time as g ∝ t−1/2, while it is cut-off exponentially for
t > τm.

In order to obtain the flux term appearing on the right side of Eq. (8) as a
function of pf , we integrate along the z direction Eq.(6), we transform it in the
Laplace space and we substitute pm as a function of pf according to Eq. (9). Thus,
the spatial derivative on the right side of Eq. (8) reads in Laplace space as:

∂p∗m(r, z, λ)

∂z

˛̨̨̨
z=zf

= −λzmsm

Km
g∗[λ, τm(r)]

»
p∗f (r, λ)− pm(r, 0)

λ

–
. (12)

Using this result in Eq.(8), we obtain the following non-local closed form equation
for the pressure in the fracture:

λ{Sf + Smg∗[λ, τm(r)]}p∗f (r, λ)− Tf

r

∂

∂r
r
∂p∗f (r, λ)

∂r
=

Sfpf (r, 0) + Smg∗[λ, τm(r)]pm(r, 0) (13)

where Sm = smzm. Considering that at time zero t = 0 the fractured zone is in
equilibrium with the matrix pf (r, 0) = pm(r, 0) the previous equation reduces to:

λ{Sf + Smg∗[λ, τm(r)]}p∗f (r, λ)− Tf

r

∂

∂r
r
∂p∗f (r, λ)

∂r
=

{Sf + g∗[λ, τm(r)]}pf (r, 0). (14)
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Note that if one considers a homogeneous matrix, so that the model reduces
to a double porosity medium, the memory function is time dependent only, i.e.
g(t|r) ≡ g(t). The function g(t), obtained by solving Eq.(6) in Laplace space,
represents the boundary matrix flux. One note that g(t) is equivalent to the Laplace
transform of the gas flux in the linearized model of [8].

In the following, we consider an heterogeneous matrix and thus we average
the flux over the fracture-matrix boundary r. We use a stochastic approach be-
cause we do not have a proper description of the heterogeneity distribution along
r. Accordingly, we describe the heterogeneity of the matrix by a distribution of
transition times, as described in the next section.

2.1.3 Ensemble average

In order to obtain an upscaled effective formulation for the multi-continuum model,
we average the governing equation (13) over the heterogeneity of the matrix and
we obtain:

λ [Sf + ϕ∗(λ)] 〈p∗f (r, λ)〉 − Tf

r

∂

∂r

"
r
∂〈p∗f (r, λ)〉

∂r

#
= [Sf + ϕ∗(λ)] 〈pf (r, 0)〉, (15)

where the squared brackets indicate the ensemble averaged quantities. In Eq. (15)
we defined the global memory function as:

ϕ∗(λ) = 〈Smg∗[λ, τm(r)]〉, (16)

where the angular brackets indicate ensemble average over the distribution of
characteristic time scales τm(r). The global memory function for an heteroge-
neous medium is given by the superposition of single memory functions g(t) for
homogeneous matrix.

In order to average Eq. (13) and obtain Eq. (15) we use the mean field approx-
imation: D

ϕ∗(λ) p∗f (r, λ)
E
'
˙
ϕ∗(λ)

¸
〈p∗f (r, λ)〉 (17)

which is pertinent for times at which the variation scale of the pressure in the
fracture, pf , is larger than the heterogeneity scale of matrix. Note that this ap-
proximation is done on a routine basis in similar multi-rate mass transfer (MRMT)
models for solute transport in multi-continuum models [27,28]. The global mem-
ory function defined in Eq. (16) is given by superposition of the local memory
functions n g(τ, t):

ϕ(t) = Sm

Z ∞

0
P (τ) g(t, τ) dτ, (18)

where P (τ) is the probability density function of characteristic times τm, which
are related to the immobile conductivity K, through Eq. (10). The distribution of
characteristic time τm is expressed in terms of the distribution of Km, PK(k), as:
P (τ) = z2

msm/τ2PK(z2
msm/τ). A broad distribution of mass transfer scales may
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be modeled by a truncated power law distribution of the trapping times in the
matrix:

P (τ) =
1− β

τ1−β
2 − τ1−β

1

τ−β Θ(τ2 − τ) Θ(τ − τ1), (19)

where 1/2 < β < 1; τ1 and τ2 are the lower and upper limits of the truncated
power law distribution, and Θ(·) is the Heaviside step function, which is equal to
one if its argument is larger than zero and zero otherwise. We insert Eq. (19) in
Eq. (18) and, as shown in the Appendix A, we approximate the global memory
function by the following truncated power-law:

ϕ(t) =
Sm

τ2Γ (1− β)

„
t

τ2

«−β

exp

„
− t

τ2

«
, (20)

where Γ (·) denotes the gamma function. In Laplace space the memory function
reads as:

ϕ∗(λ) = Sm (λτ2 + 1)β−1 . (21)

From Eq.(15), we note that the power law distribution of τ controls the dynamic of
the system when ϕ∗(λ) is larger that Sf . This condition identifies a characteristic
time τa given by

τa = τ2

„
Sf

Sm

« 1
1−β

, (22)

which corresponds to the activation time of the matrix. Specifically, it denotes
the time for which Sm(τa/τ2)

1−β = Sf . The influence of the truncated power law
distribution of trapping time in the matrix is dominant for time t > τa. Note that
for t < τa the model gives information on the fractured zone only and not on
the reservoir properties. Only for time t > τa the flux derived in the proposed
model depends on the properties of the reservoir and then we can obtain different
behaviour according to parameters of the matrix.

2.2 Solutions

In the following we solve Eq. (15) in Laplace space. The general solution of Eq. (15)
is given by (see Appendix B for details):

〈p∗f (r, λ)〉 =
ˆ
I1

`
R′
´
K0

`
r′
´
+K1

`
R′
´
I0

`
r′
´˜

C∗(λ) +
pf (0)

λ
(23)

where I0(·) and K0(·) are the 0-th order modified Bessel functions of first and
second kind respectively, I1(·) and K1(·) are the 1-st order modified Bessel func-
tions of first and second kind; C∗(λ) is determined by the boundary conditions.
We furthermore defined:

R′(λ) = R
q

τ ′(λ)λ, r′(λ) = r
q

τ ′(λ)λ (24)



10 A. Russian et al.

τ ′(λ) =
Sf + ϕ∗(λ)

Tf
. (25)

In order to solve Eq. (15) and compute the C∗(λ) in Eq. (23), we note that the
outgoing flux, at r = rw, is proportional to the difference of pressure between the
fractured zone and the well. Thus, we impose a Cauchy-type boundary condition
at the horizontal well

2πrwTf

"
∂〈pf (r, t)〉

∂r

#
r=rw

=
1

α
[〈pf (rw, t)〉 − pw(t)], r = rw (26)

"
∂〈pf (r, t)〉

∂r

#
r=R

= 0, r = R (27)

where α is the skin factor that relates the pressure drop with the flux of gas
entering the horizontal well, and pw(t) is the pressure in the horizontal well. At
the edge of the fractured zone, for r = R, we imposed a no-flux boundary condition
as discussed in Sect. 2.1.1. Thus, the function C∗(λ) in Eq.(23) is given by:

C∗(λ) = −
pf (0)

λ − p∗w(λ)

I0 (r′w)K1 (R′) + I1 (R′)K0 (r′w) + A r′w [I1 (R′)K1 (r′w)− I1 (r′w)K1 (R′)]
,

(28)

where we define A = 2πTfα and, similarly as in Eq. (24),

r′w = rw

q
τ ′(λ) λ. (29)

The flux of gas entering the horizontal well, Q(t), [L3T−1], is computed as the
radial derivative of the pressure at r = rw and is given by:

Q(t) = −2πrwTf

"
∂〈pf (r, t)〉

∂r

#
r=rw

(30)

Hence, taking the radial derivative of Eq. (23), one obtains:

Q∗(λ) = 2πr′wTf

ˆ
I1

`
R′
´
K1

`
r′w
´
−K1

`
R′
´
I1

`
r′w
´˜

C∗(λ). (31)

with C∗(λ) given in Eq. (28). Substituting expression (28) for C∗(λ) in the previous
equation yields:

Q∗(λ) =
2πr′wTf

h
pf (r,0)

λ − p∗w(λ)
i
[I1(R

′)K1(r
′
w)−K1(R

′)I1(r
′
w)]

I0 (r′w)K1 (R′) + I1 (R′)K0 (r′w) + Ar′w [I1 (R′)K1 (r′w)− I1 (r′w)K1 (R′)]
.

(32)



Multi-continuum Model for Shale Gas 11

2.3 Asymptotic behaviour

In order to depict the long time behaviour of the model we perform an asymptotic
expansion of (32) for the limit λτ ′ � 1. Thus, we obtain

Q∗(λ) ≈ τ ′(λ)πTf (R2 − r2
w)∆p

1 + λτ ′(λ)
h

R2

2 ln R
rw

+ A
2 (R2 − r2

w)
i (33)

as outlined in detail in Appendix C. Note that for simplicity we set the pressure
at the well p∗w(λ) constant and ∆p = p0 − pw.

It is worth noticing that for times t � τ2, or equivalently for λτ2 � 1, the
memory function ϕ∗(λ) → Sm. Thus, inserting this result in Eq. (25) we observed
that τ ′(λ) tends towards the constant value

τ ′(λ) → Sf + Sm

Tf
. (34)

Moreover τ ′(λ) is also constant when ϕ∗(λ) � Sf or equivalently for t � τa (see
Eq.(22)) . In this case, the flux comes from the fractured zone only, τ ′(λ) tends
towards the constant value

τ ′(λ) → Sf

Tf
. (35)

and consequently the dynamic of the flowrate depends on the parameters of the
fractured zone only. Accordingly, for the two time regimes defined by t � τ2

and t � τa the model behaves as an equivalent homogeneous model with τ ′(λ)
constant and given by (34) and (35), respectively. For these regimes, it follows
from the inverse Laplace transform of (33) that the flux behaves exponentially as

Q(t) ∼ exp(−t/τc), (36)

where the time scale τc is given by

τc =
R2Sf

Tf
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(37)

for t � τa and by

τc =
R2(Sf + Sm)

Tf

"
1

2
ln

R

rw
+

A

2

 
1− r2

w

R2

!#
(38)

for t � τ2.
In the intermediate regime τa � t � τ2, the function τ ′(λ) behaves as

τ ′ ≈ Sm

Tf
(λτ2)

β−1. (39)

By inserting this result in Eq.(33) one find that the Laplace transform of the flux
scales as Q∗(λ) ∝ (λτ2)

β−1. This implies that the flux in the intermediate time
regime decreases with the power-law behaviour

Q(t) ∝
„

t

τ2

«−β

. (40)
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Fig. 2 Temporal evolution of flux as defined in Eq.32 for different values of the cutoff time
τ2 (Fig.2a) and different values of β (Fig.2b). Parameters: rw = 0.1m, Nf = 44, R = 25m,

Sf = 10−7 m/Pa, Tf = 2 ·10−9m3/Pa/s, ∆p = 3 ·107Pa, Sm = 10−6m/Pa,α=1 Kg/m3/s. For

Fig.2a: β = 0.7, τ2 = 105d (red continuous line), τ2 = 104d (blue dashed line) and τ2 = 103d
(green dash dotted line). For Fig.2b: τ2 = 105d, β = 0.7 (red continuous line), β = 0.9 (blue
dashed line).

For β = 0.5, which is characteristic for mass transfer between the fracture and
a homogeneous matrix domain, the flux scales as Q(t) ∝ (t/τ2)

−1/2. As outlined
in the Introduction, this is the classical flux behavior observed in dual-continuum
flow and transport models such as the one employed by [8]. The model proposed
here accounts for a heterogeneous matrix domain, which may give rise to different
scaling behaviours as predicted by (40).

Figure 2a and Figure 2b illustrate the temporal evolution of the flux Q(t)
for different τ2 and values of the exponent β in (19). The curves are obtained by
numerical inverse Laplace transform of (32) using the commercial software package
MATLAB. The gas flux starts decreasing for times larger than tf = R2Sf/Tf ,
which is the characteristic time for pressure propagation across the fractured zone,
or equivalently, the mean depletion time of the fractured zone. In the absence
of a matrix region, i.e., for a homogeneous fractured zone only, tf marks the
characteristic depletion time scale for exponential decay of the gas flux. In the
intermediate time regime τa � t � τ2 the gas flux behaves as a power-law as
predicted by (40). We observe an exponential decline of the gas flux for t � τ2, as
predicted by (36).

3 Application

In the following we use the derived multi-continuum model for the interpreta-
tion of actual shale gas production data. The model was implemented using the
commercial software package MATLAB (MATLAB R2013a, The MathWorks Inc.,
Natick, MA, 2013). The evolution of the gas flux is determined by numerical in-
verse Laplace transform of the explicit Laplace space expression (33).

The implemented model computes the inverse Laplace transform. On the basis
of this solution, the model parameters are estimated by minimizing the squared
relative error between field data and the numerically inverted model. For the
parameter estimation, we adapted a MATLAB code that is part of the CTRW
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optimization Toolbox [31,32]. The code is based on the routine fminsearch imple-
mented in MATLAB, which uses a Nelder-Mead simplex direct search algorithm
to minimize the non-linear least squares objective function. The model allows es-
timating the following parameters: the radius of the horizontal well rw, the mean
radius of the zone of influence of the fracture stage R, the total compressibility of
the fractured zone Sf = zfsf , the mean effective transmissivity of the fractured
zone Tf , the initial pressure of the reservoir p(0), the total compressibility of the
matrix Sm = zmsm, the exponent of the power law distribution of transition times
in the matrix given in (19) β and its cut off τ2, the number of active fractured
zones Nf , the skin factor α. Because of the large number of fitting parameters, the
inversion can be not unique. For this reason uncertainties are largely decreased if
a prior geological and/or physical information of the site are available in order to
fix some parameters and, or, impose a pertinent range of variability on the others.
A better knowledge of fracture properties from geophysical data will improve the
best fitting of the short time behavior, while (multi-scale) measurements of the
matrix dispersivity will improve long term predictions. However these parameters
are rarely analyzed and we believe that it is a major issue for reliable predictions.

3.1 Results

In this section we consider the gas flowrate of three production wells in Louisiana
(US) for illustrating the use of the model. These wells display distinctly different
decline curve shapes. As for many other data set, only few information about the
medium properties are accompanying the decline curves. Possible modifications
of the well head configuration (e.g. change of the setup used to regulate the well
head pressure) were not reported as well. Parameters for gas production of the
three production wells (noted hereafter A, B and C) are estimated, using as much
as possible the information available at this site. The gas flowrate is fitted (see
Section 3) by fixing the radius of the horizontal well rw and the number of fractured
stages Nf expected during the fracking stage. The depth at which the horizontal
well was drilled is known and can be used to evaluate the initial pressure (p0).

Due the large uncertainties on the well pressure value, we considered a constant
flowing pressure in the well as the boundary condition pw(t) = pw in (26), and
we fit the difference of the initial reservoir pressure and the pressure in the well
∆p = p(0)− pw. The results are shown in Figure 3 for well A and Figures 4a and
4b for well B and C respectively.

Figure 3 displays the fit for well A gas flowrate with the multi-continuum
model (red solid line) and the curves related to equivalent homogeneous models.
Similar plots are given for well B and C in figures 4. The proposed figures are in
log-log scale in order to highlight the asymptotic decreasing flowrate. An equiva-
lent homogeneous model that represents the hydraulic properties of the fractured
zone only is obtained by setting ϕ∗(λ) = 0 in (15). An equivalent homogeneous
model that comprises both the fractured and matrix domain is obtained by set-
ting ϕ∗(λ) = Sm in (15). Note that in the asymptotic long time limit t � τ2,
the memory function reduces to limt→∞ ϕ(t) = Smδ(t). The first case represents
the behaviour of the homogeneous fracture domain only, while the second case
represents the the behaviour of an equivalent homogeneous system when fractures
zone and matrix are in equilibrium. For the equivalent homogeneous cases, one can
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Fig. 3 Gas rate production of well A (blue dots) in log-log scale. Measurements are taken
daily. Red line: Multi-continuum model fit. Violet line with squares: equivalent homogeneous
model with ϕ = 0, Green line with triangles: equivalent homogeneous model with ϕ = Sm.
Fixed parameters: rw = 0.09m, Nf = 44. Fitted parameters: R = 21.9m, Sf = 3.2·10−6 m/Pa,

Tf = 8.18 ·10−10m3/Pa/s, ∆p = 6.6 ·107Pa, Sm = 3.62 ·10−6m/Pa, b = 0.60, τ2 = 1.50 ·103d,

α=2.6 Kg/m4/s. Timescales: tf = R2Sf /Tf= 21.8d and tm = R2(Sf + Sm)/Tf = 46.35d.

observe that the gas flowrate deceases exponentially, see Appendix C. The data,
however, displays a much slower decrease.

The multi-continuum model can properly fit the experimental data while this
is not possible with the equivalent homogeneous models whatever its parametriza-
tion. The curves corresponding to the homogeneous models coincide with the
multi-continuum model at short times but then decrease faster than what would
be required to reproduce the flowrate tailing. The curve representing the frac-
ture domain only decreases exponentially fast for times larger than tf = R2Sf/Tf

which, as pointed out above, is the mean depletion time of the fractured zone. The
curve representing the homogeneous equivalent to fractured and matrix domain
decreases exponentially fast for times larger than tm = R2(Sf +Sm)/Tf . This time
scale represents the characteristic time to deplete both the fracture and matrix
zones. These time scales are also reflected in characteristic scales (37) and (38).
The multi-continuum model accounts for pre-asymptotic non-equilibrium between
matrix and fractured zones and yields a slowly decreasing asymptotic flowrate.

The parameters obtained by the fitting procedure are summarized in Table 1
together with the root mean squared errors of the fits and the correlation coeffi-
cients which quantify the good fit between the data and the model. The values of
the skin factor α are not mentioned in the table because the data fits are unchanged
by varying α in the range of values considered (see later discussion in Section 3.2).
Similarly, the value of τ1 is not mentioned because it can be neglected as explained
in detail in Appendix A.

The values of the physical parameters obtained by the fitting procedure are in
the range of the typical values found in the literature for a shale reservoirs [33–35,
8]. In the fitting process we impose a range of validity for some parameters such
as, for example, the radius of the fractured zone R that cannot be larger than
the half thickness of the reservoir and some appropriate limits on compressibility,
permeability and viscosity.
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Data A B C

R, [m] 21.9 33.7 34.6
Sf = zf sf , [m/Pa] 3.2 · 10−6 5.3 · 10−6 3.6 · 10−6

Tf = zf
k
µ

, [m3/Pa/s] 8.2 · 10−10 6.4 · 10−9 1.4 · 10−9

∆p = p0 − pw, [Pa] 6.6 · 107 8.2 · 106 3.6 · 107

Sm = zmsm, [m/Pa] 3.6 · 10−6 2.1 · 10−5 3.1 · 10−5

β 0.6 0.67 0.5
τ2, [day] 1.5 · 103 6.4 · 102 4.9 · 104

tf , [day] 21.8 10.8 35.6
tm, [day] 46.4 54.1 342
RMSE 6.7 · 103 6.6 · 103 1.0 · 104

Corr 0.972 0.970 9.60

Table 1 Result fitted parameters. Parameters: R radius of the fractured zone, effective com-
pressibility Sf = zf sf and Sm = zmsm with zf , zm thickness of the fractured zone and
the matrix, sf , sm compatibilities given by the soil and the gas compressibility (see Eq.(2)),
Tf = zf k/µ with k permeability and µ viscosity at reservoir conditions, difference of initial
pressure and pressure in the well ∆p = p0 − pw, exponent β and cut off τ2 of the power
law distribution of Eq.(21); RMSE is the root mean squared error and Corr is the correlation
coefficient.
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Fig. 4 Gas Rate production of well B (on the left, Fig. 4a) and of well C (on the right,
Fig. 4b). Field measurement (blue dots) are taken daily. Violet line with squares: equivalent
homogeneous model with ϕ = 0, green line with triangles: equivalent homogeneous model with
ϕ = Sm. Model parameters for well B (red line): fixed parameters: rw = 0.09 m, Nf = 45; fitted

parameters: R = 33.7 m, Sf = 5.3·10−6 m Pa−1, Tf = 6.4·10−9m3Pa−1s−1, ∆p = 8.2·106Pa,

Sm = 2.1 ·10−5m Pa−1, β = 0.67, τ2 = 6.38 ·102d, α = 24 Kg m−4s−1. Timescales for well B:
tf = 10.8 d, tm = 54.1 d. Model parameters for well C (red line): fixed parameters: rw = 0.09m,

Nf = 48; fitted parameters: R = 34.6m, Sf = 3.6 · 10−6 m Pa−1, Tf = 1.4 · 10−9m3Pa−1s−1,

∆p = 3.6 · 107Pa, Sm = 3.1 · 10−5m Pa−1, β = 0.5, τ2 = 4.9 · 104d, α = 2.5 Kg m−4s−1.
Timescales for well C: tf = 35.6 d, tm = 342.4 d.

3.2 Parameter Sensitivity

Here we perform a sensitivity analysis to evaluate the control level of each pa-
rameter, or group of parameters, in the multi-continuum model. The sensitivity
analysis consists in changing on parameter while keeping the others fixed. We per-
form this analysis starting from the parameter set best-fitted for well A (see Fig.3).
Figure 5 displays the variation of the gas flowrate dynamic versus the radius of
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Fig. 5 Previous well A flowrate fit (Fig.3) for different values of the radius of the horizontal
well rw (on the left, Fig. 5a) and of the extension of the fractured zone R (on the right, Fig.
5b). The values of rw and R are indicated in the figures and expressed in meters. Timescales:
tf = 6.5 d for R = 12 m, tf = 13 d for R = 17 m, tf = 22 d for R = 22 m and tf = 46 d for
R = 32 m. Values of the others parameters are given in the caption of Fig.3.
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Fig. 6 Previous well A flowrate fit (Fig.3) for different values of the storativity of the fractured
zone Sf (on the left, Fig. 6a) and the transmissivity of the fractured zone Tf (on the right,

Fig. 6b). The values of Tf indicated in the figure are expressed in m2/d. Others parameters
value are given in the caption of Fig.3.

the horizontal well rw (Fig.5a) and the radial extension of the fractured zone R
(Fig.5b).

Figure 5a, shows that the initial value of the gas flowrate slightly increases
with the radius of the horizontal well, but the shape of the curves or in other
words the dynamic of the gas flowrate and the late time behavior are almost
unaltered. Conversely, Figure 5b shows that the initial value of the gas flowrate
does not change for different amplitudes of the fractured zone. The curves plotted
for different values of R from 12 m to 32 m overlap at early times but separate
later. Different values for R induce different timescale tf , i.e. mean depletion times
of the fractured zone.

As pointed out previously, the gas flux starts decaying for t > tf . Figure 6
displays the variation of the flowrate as a function of the total compressibility
of the fractured zone Sf (Fig.6a) and the effective transmissivity of the fractured
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Fig. 7 Previous well A flowrate fit (Fig.3) for different values of the storativity of the matrix
Sm (Fig.3a) and different values of the difference between the initial pressure and the pressure
in the well ∆p = pf (0) − pw (Fig.3a). The values of Sm and ∆p are indicated in the figures.
Others parameters value are given in the caption of Fig.3.

zone Tf (Fig.6b). As observed when varying R (Fig.5b), varying Sf and Tf implies
different tf , and thus depletion scales.

Thus, higher values of total compressibility of the fractured zone imply more
persistent high flowrates. In fact, higher Sf implies higher storativity and larger
amount of gas trapped. For large times, the curves tend to the same behaviour.
This is because at large times the behaviour is controlled by the parameters of
the matrix. As for R, at very short times, Sf does not seem to have a strong
influence of the value of the gas flowrate. Conversely Figure 6b, shows that the
initial value of the gas flowrate is very dependent on Tf and varies proportionally.
As for Sf , and for the same reason, at larger times, the curves for different Tf get
closer and share similar behaviour. Figure 7a shows the dependency of the flowrate
curves on the total compressibility of the matrix Sm. As expected, Sm influences
the long time behaviour and does not influence at all short time behaviour (the
opposite to the parameters of the fractured zone). For t > τf higher Sm implies
higher long time flowrate, because the amount of gas to extract is higher. For
extremely low compressibility in the matrix, once the fractured zone is depleted,
the flowrate decreases exponentially, similarly to the homogeneous model illus-
trated in Fig. 3. Figure 8 displays flowrate curves for different parameters of the
power law distribution of transition times in the matrix given in Eq. (19): 8a for
different exponents β, 8b, for different cutoff τ2. Since the β and τ2 parameters
characterize the matrix, neither of them influences the initial dynamic of the gas
flowrate, but only the long time behaviour. The parameter β weakly influences
the slope of the gas flowrate for that decline regime. For higher values of β we can
observe a slightly sharper decrease. The reason is that decreasing β implies flatter
distribution of mass transfer times, while a flatter distribution of mass transfer
times triggers a longer tail in the declining flowrate. The influence of β is clearly
visible on the figure when τ2 � tf , i.e. the asymptotic regime t−β is reached, as
shown in Figure2 and discussed above.

The parameter τ2 controls significantly the behaviour of the system at long
times. Figure 8b displays different shapes of the flowrate decline curves. Small
τ2 implies that the distribution of transition times in the matrix is narrow. A
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Fig. 8 Previous well A flowrate fit (Fig.3) for different values of the exponent β (on the left,
Fig.8a) and of cut-off time τ2 (on the right, Fig.8b) of the power law distribution given in
(19). The values of τ2 indicated in the figure are expressed in days. Others parameters value
are given in the caption of Fig.3.

distribution of transition times can be mapped into a distribution of transmissiv-
ities. Small transition times imply high transmissivities. Thus, a small value of τ2

implies a narrow distribution of transmissivities characterized by relatively high
values. For high values of transmissivities the matrix reaches equilibrium relatively
fast and the whole system behaves as an equivalent homogeneous system and we
do not observe the long time scaling of the flowrate. This is the case of the curve
of Fig. 8b with τ2 = 102 d, that behaves similarly to the curve of the equivalent
homogeneous model with ϕ = Sm in Fig. 3 right. For larger τ2 (see curve with
τ2 = 103 d), the distribution of storage times is broad enough and non-equilibrium
mass transfer between the fractured zone and the matrix induces anomalous scal-
ing. As τ2 becomes even larger (see curve with τ2 = 104d and τ2 = 105 d) a
third behaviour occurs. Very high cut offs imply extremely low permeability of the
matrix. Thus, for a long time, the contribution of the matrix does not affect the
total gas flowrate, and the system behaves as the homogeneous model with ϕ = 0
(see Fig. 3). Yet, contrary to the equivalent homogeneous model (Fig. 3), the ma-
trix contributes to the dynamics of the system at large times. The parameter τ2

is a key parameters because the decline curve decreases exponentially, and thus
production drop noticeably, for time larger than τ2.

In Fig.7b we explore the difference between the pressure in the well and the
initial pressure. We observe that the initial pressure difference does not affect
the dynamics of the gas flowrate but only shift it upward (for higher difference
of pressure) or downward (for lower difference). Accordingly, it appears that the
initial pressure of shale matrix can be determined as soon as the shape is fitted by
set of parameter describing the reservoir hydrodynamic properties. We found an
initial pressure of 10.40 ·107 Pa, 7.28 ·107 Pa and 4.48 ·107 Pa for well A, B and C
respectively that corresponds to 1.10, 0.77 and 0.85 times the lithostatic pressure
respectively.

It turns out that the model derived is slightly sensitive to the parameter α,
the skin factor, but only at very short time. Evaluating the terms in the equation
for the flux Eq.(32), we observe that the term A, which contains the parameter
α multiplies the difference of the product of two Bessel functions which actually
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gives very small values compared to the first term in the denominator. Physically
speaking this means that only at very early times, the flux is limited by the skin
factor, at larger times by the release flux from the matrix.

4 Conclusion

In this work we have derived an original analytical multi-continuum model that
can be used for analyzing gas flowrates in shale reservoirs. We show that both
the low permeability and the intrinsic heterogeneity of the shale matrix control
the complex transient regimes and the long asymptotic decreasing flowrate usu-
ally observed during the gas production. The model describes the dynamics of the
gas flowrate as the function of the standard physical parameters (compressibil-
ity, transmissivity, ...) and the (simplified) geometry of the stimulated reservoir.
Because of the manifest lack of information on the (mechanically altered) shale
matrix and consequently the spatial distribution of its heterogeneity, we described
the matrix diffusivity stochastically using a distribution of transition times. The
latter is parametrized by τ2 and β, the cut off and the slope of the distribution,
respectively.

The model predicts:
1) an initial regime controlled by the properties of the transmissivity Tf and
diffusivity Tf/Sf of the fractures, as well as the length of the individual fracture
R,
2) a second transient regime, which covers the main production duration of the
well, where the flowrate is controlled by coupled effects of both the fractures and
the shale matrix properties; this regime corresponds to the refill of the fractures by
the matrix. This part of the gas production curve can display distinctly different
trends including power law decline regimes: Q(t) ∝ (t/τ2)

−β where β ∈ (1/2; 1) is
a lumped parameter describing the heterogeneity distribution in the matrix.
3) For t � τ2 the gas production rate decreases exponentially: Q(t) ∝ exp(−t/τc)
with τc ∼ R2(Sf + Sm)/Tf .

It is worth noticing that for β = 0.5 the presented model shows the scaling
Q(t) ∝ t−1/2 for the gas flux, which is typical for a dual continuum model char-
acterized by a homogeneous matrix domain such as the one considered by [8].
These authors account for non-linear pressure diffusion within the matrix domain,
which however does not alter the characteristic t−1/2–behavior. The model pro-
posed in this paper accounts for a heterogeneous matrix domain and thus allows
for different scaling behaviors.

To illustrate the applicability of the model we considered real data from three
production wells that display distinctly different gas flowrate behaviours. We show
that the model can accurately fit the different flowrate behaviours and that the
parameter values obtained by the fitting procedure are in accordance with typical
ones found in the shale reservoir literature.

As for all multi-parameter models, the reliability of the results increases if
one can constrain some parameters and, or, impose a restricted range of vari-
ability. In our model one have six parameters which are often poorly known
R, Sf , Tf , Sm, β, τ2. Any reliable data concerning these parameters will dramat-
ically reduce the uncertainties on the parameter estimation and consequently on
the predictability of this tool. For instance, a good estimation of R could be surely
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obtained by micro-seismic. Likewise, a better knowledge of the fracture proper-
ties from geophysical or experimental data will improve the best fitting of the
short time behavior, while (multi-scale) measurements of the matrix dispersivity
would be of great importance for long term predictions. Yet, the reliability of such
measurements on mechanically extracted cores may be arguable and an accurate
evaluation of the actual effect of fracking on the matrix properties remains highly
challenging. Accordingly, we believe that our model may be useful for tackling the
matrix properties once the other parameters, including the fracture properties, are
independently estimated.

A Derivation of the memory function

We assume that the lower cut-off scale τ1 in (19) is much smaller than the upper cut-off τ2 so
that τ1/τ2 � 1 and we approximate

Pim(τ) =
1− β

τ2

„
τ

τ2

«−β

Θ(τ2 − τ). (41)

Inserting (41) in (18), the memory function for a multi-continuum model with a constant
retardation factor reads:

ϕ(t) = Sim
1− β

τ2

„
t

τ2

«−β
∞Z

t/τ2

dz zβ−1g′(z), (42)

where g′(z) is defined as: g(t, τ) = 1
τ

g′
`

t
τ

´
. The local memory function g(t, τ) can be ex-

pressed as above from the definition of g̃(ω, τ) given in (11), we note that g̃(ω, τ) is precisely a

function of the product ωτ . The function g′(z) behaves as z−1/2 for z < 1 and decays exponen-
tially fast for z � 1. Thus, we approximate it here by the truncated power-law distribution:
g′(z) = z−1/2 exp(−z)/Γ (1/2). Inserting the previous approximation into (42) and executing
the integral for the memory function ϕκ(t) reads

ϕ(t) = Sim
1− β

τ2Γ (1/2)

„
t

τ2

«−β

Γ (β − 1/2, t/τ2). (43)

This function behaves as a power-law according to t−β for t � τ2 and is cut-off exponentially
fast for t � τ2. Thus, we approximate it by the truncated power-law given in (20).

B General solution of the model

The general solution of Eq. (15) is given by a combination of modified Bessel functions of first
kind I0(·) and second kind K0(·) [36]:

〈pf (r, λ)〉 = N(λ) K0[r
p

λτ ′(λ)] + M(λ) I0[r
p

λτ ′(λ)] +
pf (r, 0)

λ
, (44)

with τ ′(λ) defined in Eq.(25). The functions N(λ) and M(λ) do not depend on the radial co-
ordinate r and are determined by imposing the given boundary condition in the general solution
(44). Considering no radial flux at r = R, Eq.(27), we obtain: N(λ) = M(λ) I1[r

√
λτ ′]/K1[r

√
λτ ′]

and by imposing Cauchy-type boundary condition at the well, Eq.(26), we obtain M(λ). By
inserting N(λ) and M(λ) in Eq.(44) and rearranging the terms we obtain Eq.(23).
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C Asymptotic expansion

In order to evaluate the asymptotic behavior of the gas flux Q(t), we consider the expansion
of the Bessel functions in (32) for small arguments x,

K0 (x) = − ln(x/2) + . . . (45)

I0 (x) = 1 + . . . (46)

K1 (x) =
1

x
+

1

2
ln x . . . (47)

I1 (x) =
x

2
. . . , (48)

where the dots denote sub-leading contributions. Substituting these expansion into (32) we
obtain:

Q∗(λ) '
πTf

“
R′2 − r′2w

” h
pf (0)

λ
− p∗w(λ)

i
1 + R′2

2
ln R′

r′w
+ A

2

`
R′2 − r′2w

´ . (49)

Setting the pressure in the extraction well constant, i.e., pw(t) = pw = constant, which implies
p∗w(λ) = λ−1pw, and substituting r′, R′ and r′w by (24) and (29) we obtain Eq.(33).

D Nomenclature

a, bi rock and fluid compressibility [Pa−1]
k permeability, [L2 ]
Nf number of fracture stages [-]
pw pressure in the horizontal well [M L−1 T−2]
p spatially averaged pressure [M L−1 T−2]
〈p〉 mean pressure averaged spatially and stochastically [M L−1 T−2]
Q gas rate production [L3 T−1]
r radial distance from the edge of horizontal well, [L]
rw radius of horizontal well, [L]
R radial extension of the fractured zone, [L]
s effective compressibility [Pa−1]
t time, [T]
tf mean diffusion time in the fractured zone[T]
tm mean diffusion time over the thickness of the matrix [T]
z local spatial distance from the fractured zone [L]

α outflow constant [ L−3 T−1 M ]
β exponent of truncated power law distribution , [-]
µ viscosity, [M T−2]
λ Laplace variable [T−1]
ρi density [M L−3]
τ1 lower limit truncated power law distribution [T]
τ2 cut-off truncated power law distribution [T]
τa activation time of the drainage matrix [T]
ϕ memory function of the multi-continuum model [T−1]

Derived quantities:
Ki = ki/µi permeability divided by viscosity, [L3 M−1 T]
Si = zisi total effective compressibility, [m Pa−1]
Ti = ziKi effective transmissivity [L4 M−1 T ]
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